Question

Suppose a random variable X takes on the value of -1 or 1, each with the...

Suppose a random variable X takes on the value of -1 or 1, each with the probability of 1/2. Let y=X1+X2+X3+X4, where X1,....X4 are independent. Find E(Y) and Find Var(Y)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10...
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10 and variance 16. in addition, Suppose that Y1, Y2, Y3, Y4, and Y5are independent and identically distributed random variables with mean 15 and variance 25. Suppose further that X1, X2, X3, and X4 and Y1, Y2, Y3, Y4, and Y5are independent. Find Cov[bar{X} + bar{Y} + 10, 2bar{X} - bar{Y}], where bar{X} is the sample mean of X1, X2, X3, and X4 and bar{Y}...
Let X1, X2, X3, and X4 be mutually independent random variables from the same distribution. Let...
Let X1, X2, X3, and X4 be mutually independent random variables from the same distribution. Let S = X1 + X2 + X3 + X4. Suppose we know that S is a Chi-Square random variable with 2 degrees of freedom. What is the distribution of each of the Xi?
Suppose that X1,X2 and X3 are independent random variables with common mean E(Xi) = μ and...
Suppose that X1,X2 and X3 are independent random variables with common mean E(Xi) = μ and variance Var(Xi) = σ2. Let V= X2−X3 and W = X1− 2X2 + X3. (a) Find E(V) and E(W). (b) Find Var(V) and Var(W). (c) Find Cov(V,W). (d) Find the correlation coefficient ρ(V,W). Are V and W independent?
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with...
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with variance σ2. Let Y1 = X2 +X3 , Y2 = X1 +X3 and Y3 = X1 + X2. Find the following : (in terms of σ2) (a) Var(Y1) (b) cov(Y1 , Y2 ) (c) cov(X1 , Y1 ) (d) Var[(Y1 + Y2 + Y3)/2]
Let X be a discrete random variable that takes on the values −1, 0, and 1....
Let X be a discrete random variable that takes on the values −1, 0, and 1. If E (X) = 1/2 and Var(X) = 7/16, what is the probability mass function of X?
Suppose that X1 and X2 are independent continuous random variables with the same probability density function...
Suppose that X1 and X2 are independent continuous random variables with the same probability density function as: f(x) = ( x 2 0 < x < 2, 0 otherwise. Let a new random variable be Y = min(X1, X2,). a) Use distribution function method to find the probability density function of Y, fY (y). b) Compute P(Y > 1). c) Compute E(Y )
Suppose we let X be a random variable that takes value 1, 2, 3 with equal...
Suppose we let X be a random variable that takes value 1, 2, 3 with equal probability. Then How many samples of X are needed on average to see all values at least once? Also, what if X is a random variable that takes values 1, 2 or 1,2,3,4? Thank you!
Let K be a random variable that takes, with equal probability 1/(2n+1), the integer values in...
Let K be a random variable that takes, with equal probability 1/(2n+1), the integer values in the interval [-n,n]. Find the PMF of the random variable Y = In X. Where X = a^[k]. and a is a positive number, let n = 7 and a = 2. Then what is E[Y ]?
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
A uniform random variable on (0,1), X, has density function f(x) = 1, 0 < x...
A uniform random variable on (0,1), X, has density function f(x) = 1, 0 < x < 1. Let Y = X1 + X2 where X1 and X2 are independent and identically distributed uniform random variables on (0,1). 1) By considering the cumulant generating function of Y , determine the first three cumulants of Y .