Question

Using the derivative, find the local minimum of the function below, enter the positive local minimum...

Using the derivative, find the local minimum of the function below, enter the positive local minimum X value in response
 

y=x4-18x2+4

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Use the First Derivative Test to find the local maximum and minimum values of the...
1) Use the First Derivative Test to find the local maximum and minimum values of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.): g(u) = 0.3u3 + 1.8u2 + 146 a) local minimum values:    b) local maximum values:    2) Consider the following: f(x) = x4 − 32x2 + 6 (a) Find the intervals on which f is increasing or decreasing. (Enter your answers using interval notation.) increasing:    decreasing:...
SCalcET8 14.7.010. My Notes Ask Your Teacher Find the local maximum and minimum values and saddle...
SCalcET8 14.7.010. My Notes Ask Your Teacher Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x, y) = 4 − x4 + 2x2 − y2 local maximum value(s)      local minimum value(s)      saddle point(s)      (x,...
Consider the function below. (If an answer does not exist, enter DNE.) g(x) = 250 +...
Consider the function below. (If an answer does not exist, enter DNE.) g(x) = 250 + 8x3 + x4 (a) Find the interval of increase. (Enter your answer using interval notation.) Find the interval of decrease. (Enter your answer using interval notation.) (b) Find the local minimum value(s). (Enter your answers as a comma-separated list.) Find the local maximum value(s). (Enter your answers as a comma-separated list.) (c) Find the inflection points. (x, y)=(smaller x-value) (x, y)=(larger x-value) Find the...
Find all relative extrema of the function. Use the Second-Derivative Test when applicable. (If an answer...
Find all relative extrema of the function. Use the Second-Derivative Test when applicable. (If an answer does not exist, enter DNE.) f(x) = x4 − 4x3 + 7 relative maximum     (x, y) =     relative minimum     (x, y) =    
Find the local maximum and minimum values and saddle point(s) of the function. If you have...
Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x, y) = x4 + y4 − 4xy + 1
Find the local maximum and minimum values and saddle point(s) of the function. If you have...
Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x, y) = 7 − x4 + 2x2 − y2
Find the local maximum and minimum values and saddle point(s) of the function. If you have...
Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x, y) = 5 − x4 + 2x2 − y2
Find the local maximum and minimum values and saddle point(s) of the function. If you have...
Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x, y) = 4y cos(x),    0 ≤ x ≤ 2π Find: local maximum value(s) = local minimum value(s) = saddle point(s) (x,y,f) =
Find the local maximum and minimum values and saddle point(s) of the function. If you have...
Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x, y) = xy + 8/x+8/y local maximum value(s)     local minimum value(s)     saddle point(s)     (x, y, f) =
Find the local maximum and minimum values and saddle point(s) of the function. If you have...
Find the local maximum and minimum values and saddle point(s) of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x, y) = xy + 64/x+64/y local maximum value(s)     local minimum value(s)     saddle point(s)     (x, y, f) =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT