Question

Show that the given functions y1 and y2 are solutions to the DE. Then show that...

Show that the given functions y1 and y2 are solutions to the DE. Then show that y1 and y2 are linearly independent. write the general solution. Impose the given ICs to find the particular solution to the IVP.

y'' + 25y = 0; y1 = cos 5x; y2 = sin 5x; y(0) = -2; y'(0) = 3.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The indicated functions are known linearly independent solutions of the associated homogeneous differential equation on (0,...
The indicated functions are known linearly independent solutions of the associated homogeneous differential equation on (0, ∞). Find the general solution of the given nonhomogeneous equation. x2y'' + xy' + y = sec(ln(x)) y1 = cos(ln(x)), y2 = sin(ln(x))
Given that y1 = t, y2 = t 2 are solutions to the homogeneous version of...
Given that y1 = t, y2 = t 2 are solutions to the homogeneous version of the nonhomogeneous DE below, verify that they form a fundamental set of solutions. Then, use variation of parameters to find the general solution y(t). (t^2)y'' - 2ty' + 2y = 4t^2 t > 0
y1 = 2 cos(x) − 1 is a particular solution for y'' + 4y = 6...
y1 = 2 cos(x) − 1 is a particular solution for y'' + 4y = 6 cos(x) − 4. y2 = sin(x) is a particular solution for y''+4y = 3 sin(x). Using the two particular solutions, find a particular solution for y''+4y = 2 cos(x)+sin(x)− 4/3 . Verify if the particular solution satisfies the given DE. [Hint: Rewrite the right hand of this equation in terms of the given particular solutions to get the particular solution] Verify if the particular...
if y1 and y2 are linearly independent solutions of t^2y'' + 3y' + (2 + t)y...
if y1 and y2 are linearly independent solutions of t^2y'' + 3y' + (2 + t)y = 0 and if W(y1,y2)(1)=3, find W(y1,y2)(3). ROund your answer to the nearest decimal.
Use variation of parameters to find a general solution to the differential equation given that the...
Use variation of parameters to find a general solution to the differential equation given that the functions y1 and y2 are linearly independent solutions to the corresponding homogeneous equation for t>0. y1=et y2=t+1 ty''-(t+1)y'+y=2t2
Use variation of parameters to find a general solution to the differential equation given that the...
Use variation of parameters to find a general solution to the differential equation given that the functions y 1 and y 2 are linearly independent solutions to the corresponding homogeneous equation for t>0. ty"-(t+1)y'+y=30t^2 ; y1=e^t , y2=t+1 The general solution is y(t)= ?
Consider the equation y'' + 4y = 0. a) Justify why the functions y1 = cos(4t)...
Consider the equation y'' + 4y = 0. a) Justify why the functions y1 = cos(4t) and y2 = sin(4t) do not constitute a fundamental set of solutions of the above equation. b) Find y1, y2 that constitute a fundamental set of solutions, justifying your answer.
let y1=e^x be a solution of the DE 2y''-5y'+3y=0 use the reduction of order method to...
let y1=e^x be a solution of the DE 2y''-5y'+3y=0 use the reduction of order method to find a second linearly independent solution y2 of the given DE
y = c1 cos(5x) + c2 sin(5x) is a two-parameter family of solutions of the second-order...
y = c1 cos(5x) + c2 sin(5x) is a two-parameter family of solutions of the second-order DE y'' + 25y = 0. If possible, find a solution of the differential equation that satisfies the given side conditions. The conditions specified at two different points are called boundary conditions. (If not possible, enter IMPOSSIBLE.) y(0) = 1, y'(π) = 7 y =
In this problem verify that the given functions y1 and y2 satisfy the corresponding homogeneous equation....
In this problem verify that the given functions y1 and y2 satisfy the corresponding homogeneous equation. Then find a particular solution of the nonhomogeneous equation. x^2y′′−3xy′+4y=31x^2lnx, x>0, y1(x)=x^2, y2(x)=x^2lnx. Enter an exact answer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT