Question

5. Let I be an open interval with a ∈ I and suppose that f is...

5. Let I be an open interval with a ∈ I and suppose that f is a function defined on I\{a} where the limit of f exists as x → a and L = limx→a f(x). Prove that the limit of |f| exists as x → a and |L| = limx→a |f(x)|. Is the converse true? Prove or furnish a counterexample.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. Please work each part. (a) Discuss the existence or non-existence of limx→0 2 sin 1...
4. Please work each part. (a) Discuss the existence or non-existence of limx→0 2 sin 1 x − x 2 cos 1 x using the limit theorems. (b) Let I be an open interval with a ∈ I and suppose that f is a function defined on I\{a}. Suppose that limx→a (f(x) + D(x)) exists, where D(x) = χQ(x) is the Dirichlet function. Show that limx→a f(x) does not exist.
4. Let f be a function with domain R. Is each of the following claims true...
4. Let f be a function with domain R. Is each of the following claims true or false? If it is false, show it with a counterexample. If it is true, prove it directly from the FORMAL DEFINITION of a limit. (a) IF limx→∞ f(x) = ∞ THEN limx→∞ sin (f(x))  does not exist. (b) IF f(−1) = 0 and f(1) = 2 THEN limx→∞ f(sin(x)) does not exist.
Let (X, A) be a measurable space and f : X → R a function. (a)...
Let (X, A) be a measurable space and f : X → R a function. (a) Show that the functions f 2 and |f| are measurable whenever f is measurable. (b) Prove or give a counterexample to the converse statement in each case.
Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that...
Suppose f is differentiable on a bounded interval (a,b) but f is unbounded there. Prove that f' is also unbounded in (a,b). Is the converse true?
Let f be a continuous function. Suppose theres a sequence (x_n) in [0,1] where lim f(x_n))=5....
Let f be a continuous function. Suppose theres a sequence (x_n) in [0,1] where lim f(x_n))=5. Prove there is a point x in [0,1] where f(x)=5.
Let f : R → R be defined by f(x) = x^3 + 3x, for all...
Let f : R → R be defined by f(x) = x^3 + 3x, for all x. (i) Prove that if y > 0, then there is a solution x to the equation f(x) = y, for some x > 0. Conclude that f(R) = R. (ii) Prove that the function f : R → R is strictly monotone. (iii) By (i)–(ii), denote the inverse function (f ^−1)' : R → R. Explain why the derivative of the inverse function,...
Let I be an interval. Prove that if f is differentiable on I and if the...
Let I be an interval. Prove that if f is differentiable on I and if the derrivative f' be bounded on I then f uniformly continued on I!
Let f be defined on the (0,infinity). Prove that the limit as x approaches infinity of...
Let f be defined on the (0,infinity). Prove that the limit as x approaches infinity of F(x) =L if and only if the limit as x approaches 0 from the right of f(1/x) = L. Does this hold if we replace L with either infinity or negative infinity?
Suppose that f : [0; 1] ! R is increasing on [0; 1] and that 0...
Suppose that f : [0; 1] ! R is increasing on [0; 1] and that 0 < a < 1. Prove that limx!a? f(x) exists.
. Write down a careful proof of the following. Theorem. Let (a, b) be a possibly...
. Write down a careful proof of the following. Theorem. Let (a, b) be a possibly infinite open interval and let u ∈ (a, b). Suppose that f : (a, b) −→ R is a function and that for every sequence an −→ u with an ∈ (a, b), we have that lim f(an) = L ∈ R. Prove that lim x−→u f(x) = L.