Question

For any subgroup A of a group G, and g ∈ G, show that gAg^-1 is...

For any subgroup A of a group G, and g ∈ G, show that gAg^-1 is a subgroup of G.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that if G is a group, H a subgroup of G with |H| = n,...
Show that if G is a group, H a subgroup of G with |H| = n, and H is the only subgroup of G of order n, then H is a normal subgroup of G. Hint: Show that aHa-1 is a subgroup of G and is isomorphic to H for every a ∈ G.
1) Let G be a group and N be a normal subgroup. Show that if G...
1) Let G be a group and N be a normal subgroup. Show that if G is cyclic, then G/N is cyclic. Is the converse true? 2) What are the zero divisors of Z6?
A subgroup H of a group G is called a normal subgroup if gH=Hg for all...
A subgroup H of a group G is called a normal subgroup if gH=Hg for all g ∈ G. Every Group contains at least two normal subgroups: the subgroup consisting of the identity element only {e}; and the entire group G. If G=S(n) show that A(n) (the subgroup of even permuations) is also a normal subgroup of G.
Let G be a finite group, and suppose that H is normal subgroup of G. Show...
Let G be a finite group, and suppose that H is normal subgroup of G. Show that, for every g ∈ G, the order of gH in G/H must divide the order of g in G. What is the order of the coset [4]42 + 〈[6]42〉 in Z42/〈[6]42〉? Find an example to show that the order of gH in G/H does not always determine the order of g in G. That is, find an example of a group G, and...
Let G be a group. Prove that the relation a~b if b=gag^-1 for some g in...
Let G be a group. Prove that the relation a~b if b=gag^-1 for some g in G is an equivalence relation on G.
Suppose that H is a normal subgroup of G and K is any subgroup of G....
Suppose that H is a normal subgroup of G and K is any subgroup of G. Define HK = {hk : h ? H, k ? K}. (a) Show that HK is a subgroup of G. (b) Does the conclusion of (a) continue to hold if H is not normal in G? Justify
(a) Show that H =<(1234)> is a normal subgroup of G=S4 (b) Is the quotient group...
(a) Show that H =<(1234)> is a normal subgroup of G=S4 (b) Is the quotient group G/H abelian? Justify?
If N is a normal subgroup of G and H is any subgroup of G, prove...
If N is a normal subgroup of G and H is any subgroup of G, prove that NH is a subgroup of G.
Show that any dihedral group is isomorphic to a subgroup of GLn(R). (Be as precise as...
Show that any dihedral group is isomorphic to a subgroup of GLn(R). (Be as precise as possible, giving an explicit map between generators r, s of D2n and certain 2 × 2 matrices.)
Show that if H is a subgroup of index 2 in a finite group G, then...
Show that if H is a subgroup of index 2 in a finite group G, then every left coset of H is also a right coset of H. *** I have the answer but I am really looking for a thorough explanation. Thanks!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT