Question

Let f : [a,b] → R and g : [a,b] → R be two bounded functions....

Let f : [a,b] → R and g : [a,b] → R be two bounded functions. Suppose f ≤ g on [a,b].

Hints

∀a ∈ A ∃b ∈ B s.t. a ≤ b, then supA ≤ supB

∀a∈A ∃b∈B s.t. a≥b,
then infB≤infA.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f : [a, b] → R be bounded, and assume that f is continuous on...
Let f : [a, b] → R be bounded, and assume that f is continuous on [a, b). Prove that f is integrable on [a, b].
Let f and g be continuous functions on the reals and let S={x in R |...
Let f and g be continuous functions on the reals and let S={x in R | f(x)>=g(x)} . Show that S is a closed set.
a) Let f : [a, b] −→ R and g : [a, b] −→ R be...
a) Let f : [a, b] −→ R and g : [a, b] −→ R be differentiable. Then f and g differ by a constant if and only if f ' (x) = g ' (x) for all x ∈ [a, b]. b) For c > 0, prove that the following equation does not have two solutions. x3− 3x + c = 0, 0 < x < 1 c) Let f : [a, b] → R be a differentiable function...
Let f : [a,b] → R be a bounded function and let:             M = sup...
Let f : [a,b] → R be a bounded function and let:             M = sup f(x)             m = inf f(x)             M* =sup |f(x)|             m* =inf |f(x)| assuming you are taking values of x that lie in [a,b]. Is it true that M* - m* ≤ M - m ? If it is true, prove it. If it is false, find a counter example.
Let f: R --> R be a differentiable function such that f' is bounded. Show that...
Let f: R --> R be a differentiable function such that f' is bounded. Show that f is uniformly continuous.
Let f and g be measurable unsigned functions on R^d . Assume f(x) ≤ g(x) for...
Let f and g be measurable unsigned functions on R^d . Assume f(x) ≤ g(x) for almost every x. Prove that the integral of f dx ≤ Integral of g dx.
Let A, B ⊆R be intervals. Let f: A →R and g: B →R be differentiable...
Let A, B ⊆R be intervals. Let f: A →R and g: B →R be differentiable and such that f(A) ⊆ B. Recall that, by the Chain Rule, the composition g◦f: A →R is differentiable as well, and the formula (g◦f)'(x) = g'(f(x))f'(x) holds for all x ∈ A. Assume now that both f and g are twice differentiable. (a) Prove that the composition g ◦ f is twice differentiable as well, and find a formula for the second derivative...
Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous...
Let 0 < a < b < ∞. Let f : [a, ∞) → R continuous R at [a, b] and f decreasing on [b, ∞). Prove that f is bounded above.
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous...
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous functions. If limx→a f(x) = f(a) and limx→a g(x) = g(a) with f(a) < g(a), then there exists δ > 0 such that x ∈ D, 0 < |x − a| < δ =⇒ f(x) < g(x).
Let f and g be functions between A and B. Prove that f = g iff...
Let f and g be functions between A and B. Prove that f = g iff the domain of f = the domain of g and for every x in the domain of f, f(x) = g(x). Thank you!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT