Question

1) x(t+2) = x(t+1) + x(t) , t >=0 determine a closed solution (i.e. a solution...

1)

x(t+2) = x(t+1) + x(t) , t >=0

determine a closed solution (i.e. a solution dependent only on time t ) for above eqn. Verify your answer by evaluating your solution at t = 0 , 1, 2, 3, 4, 5.

We are given x(0) = 1 and x(1) = 1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
x(t+2) = x(t+1) . x(t) , t >=0 Solve a transformed version of the difference equation....
x(t+2) = x(t+1) . x(t) , t >=0 Solve a transformed version of the difference equation. Think of a transformation that takes multiplication to addition, apply this transformation to above ewn, and solve the transformed system. We are given x(0) = 1 and x(1) = 1
Choose C so that y(t) = −1/(t + C) is a solution to the initial value...
Choose C so that y(t) = −1/(t + C) is a solution to the initial value problem y' = y2 y(2) = 3. Verify that the given formula is a solution to the initial value problem. x′ = −y, y′ = x, x(0) = 1, y(0) = 0: x(t) = cost, y(t) = sin t
Consider the recurrence relation T(1) = 0, T(n) = 25T(n/5) + 5n. (a) Use the Master...
Consider the recurrence relation T(1) = 0, T(n) = 25T(n/5) + 5n. (a) Use the Master Theorem to find the order of magnitude of T(n) (b) Use any of the various tools from class to find a closed-form formula for T(n), i.e. exactly solve the recurrence. (c) Verify your solution for n = 5 and n = 25.
2-Verify the given linear approximation at a = 0. Then determine the values of x for...
2-Verify the given linear approximation at a = 0. Then determine the values of x for which the linear approximation is accurate to within 0.1. (Enter your answer using interval notation. Round your answers to three decimal places.) 1 (1 + 4x)4 ≈ 1 − 16x
Find the (real-valued) general solution to the system of ODEs given by: X’=[{-1,-1},{2,-3}]X (X is a...
Find the (real-valued) general solution to the system of ODEs given by: X’=[{-1,-1},{2,-3}]X (X is a vector) -1,-1, is the 1st row of the matrix 2,-3, is the  2nd row of the matrix. Then, determine whether the equilibrium solution x1(t) = 0, x2(t) = 0 is stable, a saddle, or unstable.
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x...
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x for 0≤x≤ π. if you like, you can use/cite the solution of Fourier sine series of sin^2(x) on [0,pi] = 1/4-(1/4)cos(2x) please show all steps and work clearly so I can follow your logic and learn to solve similar ones myself.
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the interval 0 ≤ x ≤ 1. (1) What is the normalization constant, C? (2) Express ψ(x,0) as a linear combination of the eigenstates of the infinite square well on the interval, 0 < x < 1. (You will only need two terms.) (3) The energies of the eigenstates are En = h̄2π2n2/(2m) for a = 1. What is ψ(x, t)? (4) Compute the expectation...
Find the absolute extrema of the function on the closed interval f(x)= 1 - | t...
Find the absolute extrema of the function on the closed interval f(x)= 1 - | t -1|, [-7, 4] minimum = maximim = f(x)= x^3 - (3/2)x^2, [-3, 2] minimim = maximim = f(x)= 7-x, [-5, 5] minimim = maximim =
Power series Find the particular solution of the differential equation: (x^2+1)y"+xy'-4y=0 given the boundary conditions x=0,...
Power series Find the particular solution of the differential equation: (x^2+1)y"+xy'-4y=0 given the boundary conditions x=0, y=1 and y'=1. Use only the 7th degree term of the solution. Solve for y at x=2. Write your answer in whole number.
Determine how the following lines interact. (x, y, z) = (-2, 1, 3) + t(1, -1,...
Determine how the following lines interact. (x, y, z) = (-2, 1, 3) + t(1, -1, 5) ; (x, y, z) = (-3, 0, 2) + s(-1, 2, -3) (x, y, z) = (1, 2, 0) + t(1, 1, -1) ; (x, y, z) = (3, 4, -1) + s(2, 2, -2) x = 2 + t, y = -1 + 2t, z = -1 – t ; x = -1 - 2s, y = -1 -1s, z = 1...