Question

Suppose A ⊆ R is nonempty and bounded above and β ∈ R. Let A +...

Suppose A ⊆ R is nonempty and bounded above and β ∈ R. Let A + β = {a + β : a ∈ A}

Prove that A + β has a supremum and sup(A + β) = sup(A) + β.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
let A be a nonempty subset of R that is bounded below. Prove that inf A...
let A be a nonempty subset of R that is bounded below. Prove that inf A = -sup{-a: a in A}
Let S and T be nonempty subsets of R with the following property: s ≤ t...
Let S and T be nonempty subsets of R with the following property: s ≤ t for all s ∈ S and t ∈ T. (a) Show that S is bounded above and T is bounded below. (b) Prove supS ≤ inf T . (c) Given an example of such sets S and T where S ∩ T is nonempty. (d) Give an example of sets S and T where supS = infT and S ∩T is the empty set....
Let x = {x} and y ={y} represent bounded sequences of real numbers, z = x...
Let x = {x} and y ={y} represent bounded sequences of real numbers, z = x + y, prove the following: supX + supY = supZ where sup represents the supremum of each sequence.
A. Let p and r be real numbers, with p < r. Using the axioms of...
A. Let p and r be real numbers, with p < r. Using the axioms of the real number system, prove there exists a real number q so that p < q < r. B. Let f: R→R be a polynomial function of even degree and let A={f(x)|x ∈R} be the range of f. Define f such that it has at least two terms. 1. Using the properties and definitions of the real number system, and in particular the definition...
Let f : [a,b] → R be a bounded function and let:             M = sup...
Let f : [a,b] → R be a bounded function and let:             M = sup f(x)             m = inf f(x)             M* =sup |f(x)|             m* =inf |f(x)| assuming you are taking values of x that lie in [a,b]. Is it true that M* - m* ≤ M - m ? If it is true, prove it. If it is false, find a counter example.
1. Let A ⊆ R and p ∈ R. We say that A is bounded away...
1. Let A ⊆ R and p ∈ R. We say that A is bounded away from p if there is some c ∈ R+ such that |x − p| ≥ c for all x ∈ A. Prove that A is bounded away from p if and only if p not equal to A and the set n { 1 / |x−p| : x ∈ A} is bounded. 2. (a) Let n ∈ natural number(N) , and suppose that k...
Let A be open and nonempty and f : A → R. Prove that f is...
Let A be open and nonempty and f : A → R. Prove that f is continuous at a if and only if f is both upper and lower semicontinuous at a.
Suppose S ⊂ R is nonempty and M is an upper bound for S. Show M...
Suppose S ⊂ R is nonempty and M is an upper bound for S. Show M = sup S if and only if for every Ɛ > 0, there exists x ∈ S so that x > M − Ɛ.
Real Analysis I Prove the following exercises (show all your work)- Exercise 1.1.1: Prove part (iii)...
Real Analysis I Prove the following exercises (show all your work)- Exercise 1.1.1: Prove part (iii) of Proposition 1.1.8. That is, let F be an ordered field and x, y,z ∈ F. Prove If x < 0 and y < z, then xy > xz. Let F be an ordered field and x, y,z,w ∈ F. Then: If x < 0 and y < z, then xy > xz. Exercise 1.1.5: Let S be an ordered set. Let A ⊂...
Suppose ? ⊂ R^? , ? ⊂ R^? are nonempty and open and ? : ?...
Suppose ? ⊂ R^? , ? ⊂ R^? are nonempty and open and ? : ? → R^? and ? : ? → R^? . Let ℎ : ? × ? → R ?+? be defined by ℎ(u, v) = (?(u), ?(v)). If ? is continuous at x ∈ ? and ? is continuous at y ∈ ? , then show that ℎ is continuous at (x, y) ∈ ? × ? . Hint: Note that for any vectors z...