Question

Let f(x, y) = −x 3 + y 2 . Show that (0, 0) is a...

Let f(x, y) = −x 3 + y 2 . Show that (0, 0) is a saddle point. Note that you cannot use the second derivative test for this function. Hint: Find the curve of intersection of the graph of f with the xz-plane.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(3)If H(x, y) = x^2 y^4 + x^4 y^2 + 3x^2 y^2 + 1, show that...
(3)If H(x, y) = x^2 y^4 + x^4 y^2 + 3x^2 y^2 + 1, show that H(x, y) ≥ 0 for all (x, y). Hint: find the minimum value of H. (4) Let f(x, y) = (y − x^2 ) (y − 2x^2 ). Show that the origin is a critical point for f which is a saddle point, even though on any line through the origin, f has a local minimum at (0, 0)
Let f(x) = x*(2-x) if x>=0, or x*(x+2) if x<0 i) graph the function from x=-3...
Let f(x) = x*(2-x) if x>=0, or x*(x+2) if x<0 i) graph the function from x=-3 to x=+3. If you like WolframAlpha, use Piecewise[{{x*(2-x),x=>0},{x*(x+2),x<0}}] If you like Desmos, use f(x)= {x>=0:x*(2-x), x<0:x*(x+2)} (for some reason, when you paste that it, it forgets the first curly-brace { so you’ll need to add it in by hand) Or, you can use this, but it makes it less clear how to take the derivative: f(x) = -sign(x)*x*(x - 2*sign(x) ) ii) Find and...
Let y = x 2 + 3 be a curve in the plane. (a) Give a...
Let y = x 2 + 3 be a curve in the plane. (a) Give a vector-valued function ~r(t) for the curve y = x 2 + 3. (b) Find the curvature (κ) of ~r(t) at the point (0, 3). [Hint: do not try to find the entire function for κ and then plug in t = 0. Instead, find |~v(0)| and dT~ dt (0) so that κ(0) = 1 |~v(0)| dT~ dt (0) .] (c) Find the center and...
Let f(x,y) = e-x^2 + 5y^2 - y. Use the Second Partials Test to determine which...
Let f(x,y) = e-x^2 + 5y^2 - y. Use the Second Partials Test to determine which of the following is true. A) f(x,y) has a saddle point at (0, 1/10) B) f(x,y) has a relative minimum at (0, 1/10) C) f(x,y) has a relative maximum at (0, 10) D) f(x,y) does not have a critical point at (0, 1/10)
Problem 1. (1 point) Find the critical point of the function f(x,y)=−(6x+y2+ln(|x+y|))f(x,y)=−(6x+y2+ln(|x+y|)). c=? Use the Second...
Problem 1. (1 point) Find the critical point of the function f(x,y)=−(6x+y2+ln(|x+y|))f(x,y)=−(6x+y2+ln(|x+y|)). c=? Use the Second Derivative Test to determine whether it is A. a local minimum B. a local maximum C. test fails D. a saddle point
Find the point on the curve y = sqrt(x) is closest to the point (3, 0)...
Find the point on the curve y = sqrt(x) is closest to the point (3, 0) , and find the value of this minimum distance. Use the Second Derivative Test to show that this value is a minimum. Show work
Consider function f(x, y) = x 2 + y 2 − 2xy and the 3D graph...
Consider function f(x, y) = x 2 + y 2 − 2xy and the 3D graph z = x 2 + y 2 − 2xy. (a) Sketch the level sets f(x, y) = c for c = 0, 1, 2, 3 on the same axes. (b) Sketch the section of this graph for y = 0 (i.e., the slice in the xz-plane). (c) Sketch the 3D graph.
The function f ( x , y ) = x 3 + 27 x y 2...
The function f ( x , y ) = x 3 + 27 x y 2 − 27 x has partial derivatives given by f x = 3 x 2 + 27 y 2 − 27, f y = 54 x y, f x x = 6 x, f y y = 54 x, f x y = 54 y, and f y x = 54 y, AND has  as a critical point. (You need NOT check this.) Use the second...
Let f(x, y) = (2y-x^2)(y-2x^2) a. Show that f(x, y) has a stationary point at (0,...
Let f(x, y) = (2y-x^2)(y-2x^2) a. Show that f(x, y) has a stationary point at (0, 0) and calculate the discriminant at this point. b. Show that along any line through the origin, f(x, y) has a local minimum at (0, 0)
Let F ( x , y ) = 〈 e^x + y^2 − 3 , −...
Let F ( x , y ) = 〈 e^x + y^2 − 3 , − e ^(− y) + 2 x y + 4 y 〉. a) Determine if F ( x , y ) is a conservative vector field and, if so, find a potential function for it. b) Calculate ∫ C F ⋅ d r where C is the curve parameterized by r ( t ) = 〈 2 t , 4 t + sin ⁡ π...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT