Question

Given the following pairs of lines, determine whether they are parallel, intersecting or skew, if they...

Given the following pairs of lines, determine whether they are parallel, intersecting or skew, if they intersect, find the intersecting and the plane containing them.

1) L1: (x-1)/1=(y-2)/1=(z-3)/-2 L2:(x-1)/1=(y-3)/0=(z-2)/-1

2) L1: x=t, y=-t,z=-1 L2: x=s, y=s, z=5

2) L1: (3+2x)/0=(-3+2y)/1=(6-3z)/2 L2: x=5/2, y=(3/2)-3t, z=2+4t

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the lines L1:x=7+3t, y=7+3t, z=−1+t and L2:x=−10+4t, y=−12+5t, z=−12+4t intersect, are skew, or are...
Determine whether the lines L1:x=7+3t, y=7+3t, z=−1+t and L2:x=−10+4t, y=−12+5t, z=−12+4t intersect, are skew, or are parallel. If they intersect, determine the point of intersection; if not leave the remaining answer blanks empty.
(a) Find the distance between the skew lines l1 and l2 given with the vector equations...
(a) Find the distance between the skew lines l1 and l2 given with the vector equations l1 : r1(t) = (1+t)i+ (1+6t)j+ (2t)k; l2 : r2(s) = (1+2s)i+ (5+15s)j+ (−2+6s)k. (b) Determine if the plane given by the Cartesian equation −x + 2z = 0 and the line given by the parametric equations x = 5 + 8t, y = 2 − t, z = 10 + 4t are orthogonal, parallel, or neither.
6.(a) Determine whether the lines ?1and ?2 are parallel, skew, or intersecting. If they intersect, find...
6.(a) Determine whether the lines ?1and ?2 are parallel, skew, or intersecting. If they intersect, find the point of intersection. [6 points] ?1: ? = 5 − 12 ?, ? = 3 + 9?, ? = 1 − 3? ?2: ? = 3 + 8?, ? = −6?, ? = 7 + 2? (b) Find the distance between the given parallel planes. [10 points] 2? − 4? + 6? = 0, 3? − 6? + 9? = 1
Find the distance between the skew lines L1: x = 1 − t , y =...
Find the distance between the skew lines L1: x = 1 − t , y = 2 t , z = 2 + t L2:  x = -2 + s, y = 3 - s, z = -1 + 2s
Find the line determined by the intersecting lines. L1: x=-1+3t y=2+t z=1-2t L2: x=1-4s y=1+2s z=2-2s
Find the line determined by the intersecting lines. L1: x=-1+3t y=2+t z=1-2t L2: x=1-4s y=1+2s z=2-2s
At what point do the curves r1 =〈 t , 1 − t , 3 +...
At what point do the curves r1 =〈 t , 1 − t , 3 + t2 〉 and r2 = 〈 3 − s , s − 2 , s2 〉 intersect? Find the angle of intersection. Determine whether the lines L1 : r1 = 〈 5 − 12t , 3 + 9t ,1 − 3t 〉 and L2 : r2 = 〈 3 + 8s , −6s , 7 + 2s 〉are parallel, skew, or intersecting. Explain. If...
Find the shortest distance between line L1: x = 1 + 2t, y = 3 -...
Find the shortest distance between line L1: x = 1 + 2t, y = 3 - 4t, z = 2 + t and L2: the intersection of the planes x + y + z =1 and 2x + y - 3z = 10
Determine whether the lines l1: x = 2 + u, y = 1 + u, z...
Determine whether the lines l1: x = 2 + u, y = 1 + u, z = 4 + 7u and l2: x = -4 + 5w; y = 2 - 2w, z = 1 - 4w intersect, and if so, find the point of intersect, and the angles between the lines.
Solve the system of linear equations: x-2y+3z=4 2x+y-4z=3 -3x+4y-z=-2 2. Determine whether the lines  x+y=1 and 5x+y=3...
Solve the system of linear equations: x-2y+3z=4 2x+y-4z=3 -3x+4y-z=-2 2. Determine whether the lines  x+y=1 and 5x+y=3 intersect. If they do, find points of intersection.
2. Consider the plane with a normal vector 〈−9, 18, 18〉 which contains the point (0,...
2. Consider the plane with a normal vector 〈−9, 18, 18〉 which contains the point (0, 1, −5), and the plane containing the lines l1 and l2 where l1 is parametrically defined by x = 4 − 2m, y = m + 1, and z = 1 − 2m, and l2 is parametrically defined by x = 4 + 4n, y = 2 + n, and z = n − 1. Determine whether the planes are parallel, orthogonal, or neither.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT