Question

Linear algebra Find a transformation matrix A for P^2 -> P^3 then show its onto

Linear algebra

Find a transformation matrix A for P^2 -> P^3 then show its onto

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Linear Algebra Find the 2x2 matrix A of a linear transformation T: R^2->R^2 such that T(vi)...
Linear Algebra Find the 2x2 matrix A of a linear transformation T: R^2->R^2 such that T(vi) = wi for i = 1,2. v1=(4,3), v2=(5,4); w1=(-3,2), w2=(-3,-4)
Consider the linear transformation P : R3 → R3 given by orthogonal projection onto the plane...
Consider the linear transformation P : R3 → R3 given by orthogonal projection onto the plane 3x − y − 2z = 0, using the dot product on R3 as inner product. Describe the eigenspaces and eigenvalues of P, giving specific reasons for your answers. (Hint: you do not need to find a matrix representing the transformation.)
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that...
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R 4 → R) Problem 3. (20 pts.) Which of the following statements are true about the transformation matrix...
LINEAR ALGEBRA For the matrix B= 1 -4 7 -5 0 1 -4 3 2   ...
LINEAR ALGEBRA For the matrix B= 1 -4 7 -5 0 1 -4 3 2    -6 6    -4 Find all x in R^4 that are mapped into the zero vector by the transformation Bx. Does the vector: 1 0 2 belong to the range of T? If it does, what is the pre-image of this vector?
Problem 2. Show that T is a linear transformation by finding a matrix that implements the...
Problem 2. Show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R4 → R)​ Please show T is a linear transformation for part (a) and (b).
b) More generally, find the matrix of the linear transformation T : R3 → R3 which...
b) More generally, find the matrix of the linear transformation T : R3 → R3 which is u1  orthogonal projection onto the line spanu2. Find the matrix of T. Prove that u3 T ◦ T = T and prove that T is not invertible.
I'm studying Linear Algebra. A Matrix A is a 3*3 matrix and it has 3 linear...
I'm studying Linear Algebra. A Matrix A is a 3*3 matrix and it has 3 linear independent eigenvectors. The Matrix B has the same eigenvectors (but not necessarily the same eigenvalues). I'm supposed to prove that AB=BA. I'm given a clue that says: ,, Is it possible to diagonal A and B?''. I want to be clear that the matrixes are not given. Thank you.
A linear transformation T:V→W is onto if and only if its kernel is {0}
A linear transformation T:V→W is onto if and only if its kernel is {0}
(Linear Algebra) A n×n-matrix is nilpotent if there is a "r" such that Ar is the...
(Linear Algebra) A n×n-matrix is nilpotent if there is a "r" such that Ar is the nulmatrix. 1. show an example of a non-trivial, nilpotent 2×2-matrix 2.let A be an invertible n×n-matrix. show that A is not nilpotent.
Determine whether or not the transformation T is linear. If the transformation is linear, find the...
Determine whether or not the transformation T is linear. If the transformation is linear, find the associated representation matrix (with respect to the standard basis). (a) T ( x , y ) = ( y , x + 2 ) (b) T ( x , y ) = ( x + y , 0 )