Question

. Let f and g : [0, 1] → R be continuous, and assume f(x) =...

. Let f and g : [0, 1] → R be continuous, and assume f(x) = g(x) for all x < 1. Does this imply that f(1) = g(1)? Provide a proof or a counterexample.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0...
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0 for all x. Assume that g(x) f'(x) = f(x) g'(x) for all x. Show that there is a real number c such that f(x) = cg(x) for all x. (Hint: Look at f/g.) Let g: [0, ∞) -> R, with g(x) = x2 for all x ≥ 0. Let L be the line tangent to the graph of g that passes through the point...
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous...
Let D ⊆ R, a ∈ D, let f, g : D −→ R be continuous functions. If limx→a f(x) = f(a) and limx→a g(x) = g(a) with f(a) < g(a), then there exists δ > 0 such that x ∈ D, 0 < |x − a| < δ =⇒ f(x) < g(x).
Let g from R to R is a differentiable function, g(0)=1, g’(x)>=g(x) for all x>0 and...
Let g from R to R is a differentiable function, g(0)=1, g’(x)>=g(x) for all x>0 and g’(x)=<g(x) for all x<0. Proof that g(x)>=exp(x) for all x belong to R.
4a). Let g be continuous at x = 0. Show that f(x) = xg(x) is differentiable...
4a). Let g be continuous at x = 0. Show that f(x) = xg(x) is differentiable at x = 0 and f'(0) = g(0). 4b). Let f : (a,b) to R and p in (a,b). You may assume that f is differentiable on (a,b) and f ' is continuous at p. Show that f'(p) > 0 then there is delta > 0, such that f is strictly increasing on D(p,delta). Conclude that on D(p,delta) the function f has a differentiable...
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) -...
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) - g(b)) < 0. b) Show that inf {|f(x) - g(x)| : x ϵ [a,b]} = 0 and is achieved (is a minimum).
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0...
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0 for every x ∈ [a,b]. 1) Show that either f(x) > 0 for every x ∈ [a,b] or f(x) < 0 for every x ∈ [a,b]. 2) Assume that f(x) > 0 for every x ∈ [a,b] and prove that there exists ε > 0 such that f(x) ≥ ε for all x ∈ [a,b].
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) -...
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) - g(b)) < 0. a) Show that sup{|f(x) - g(x)| : x ϵ [a, b]} is strictly positive and achieved (is a maximum).
Let f and g be continuous functions on the reals and let S={x in R |...
Let f and g be continuous functions on the reals and let S={x in R | f(x)>=g(x)} . Show that S is a closed set.
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with...
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with limx→0 f′(x) = L, then f is differentiable on R.
Let f : [0, 1] → R be continuous with [0, 1] ⊆ f([0, 1]). Show...
Let f : [0, 1] → R be continuous with [0, 1] ⊆ f([0, 1]). Show that there is a c ∈ [0, 1] such that f(c) = c.