Question

Let K be a field. Show that the category of vector spaces over K is an...

Let K be a field. Show that the category of vector spaces over K is an Abelian category.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(A) Prove that over the field C, that Q(i) and Q(2) are isomorphic as vector spaces?...
(A) Prove that over the field C, that Q(i) and Q(2) are isomorphic as vector spaces? (B) Prove that over the field C, that Q(i) and Q(2) are not isomorphic as fields?
Let U and V be vector spaces. Show that the Cartesian product U × V =...
Let U and V be vector spaces. Show that the Cartesian product U × V = {(u, v) | u ∈ U, v ∈ V } is also a vector space.
(A) Prove that over the field C, that Q(i) and Q(sqrt(2)) are isomorphic as vector spaces....
(A) Prove that over the field C, that Q(i) and Q(sqrt(2)) are isomorphic as vector spaces. (B) Prove that over the field C, that Q(i) and Q(sqrt(2)) are not isomorphic as fields
Let V and W be finite-dimensional vector spaces over F, and let φ : V →...
Let V and W be finite-dimensional vector spaces over F, and let φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V ) = n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn}, for some vectors vk+1, . . . , vn ∈ V . Prove that...
Let L : V → W be a linear transformation between two vector spaces. Show that...
Let L : V → W be a linear transformation between two vector spaces. Show that dim(ker(L)) + dim(Im(L)) = dim(V)
Let F be a subfield of a field K satisfying the condition that the dimension of...
Let F be a subfield of a field K satisfying the condition that the dimension of K as a vector space over F is finite and equal to r. Let V be a vector space of finite dimension n > 0 over K. Find the dimension of V as a vector space over F
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by...
Let F(x,y,z) = yzi + xzj + (xy+2z)k show that vector field F is conservative by finding a function f such that and use that to evaluate where C is any path from (1,0,-2) to (4,6,3)
Let k∈R and⃗ u be a vector in a vector space. Show that if k⃗u =⃗...
Let k∈R and⃗ u be a vector in a vector space. Show that if k⃗u =⃗ 0 and k̸= 0, then⃗ u =⃗ 0. (Remark: This implies Theorem 4.1.1 (d): If k⃗u = ⃗0, then k = 0 or ⃗u = ⃗0.)
Let T:V→V be an endomorphism of a finite dimensional vector space over the field Z/pZ with...
Let T:V→V be an endomorphism of a finite dimensional vector space over the field Z/pZ with p elements, satisfying the equation Tp=T. Show that T is diagonalisable.
2.5.8 Let U be a vector space over a field F and T ∈ L(U). If...
2.5.8 Let U be a vector space over a field F and T ∈ L(U). If λ1, λ2 ∈ F are distinct eigenvalues and u1, u2 are the respectively associated eigenvectors of T , show that, for any nonzero a1, a2 ∈ F, the vector u = a1u1 + a2u2 cannot be an eigenvector of T .