Question

Show that the symmetric difference of two sets is equal to the union of the two...


Show that the symmetric difference of two sets is equal to the union of the two sets minus the intersection of the two sets: (A\B)U(B\A)=(AUB)\(A intersect B).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Definition 1. The symmetric difference of two sets A and B is the set A△B defined...
Definition 1. The symmetric difference of two sets A and B is the set A△B defined by A△B = (A \ B) ∪ (B \ A). (a) Draw the Venn diagram for the symmetric difference. (b) Prove that A△B = (A ∪ B) \ (A ∩ B). (c) Prove A△A = ∅, A△∅ = A. (d) Prove that for sets A, B, we have A△B = A \ B if and only if B ⊆ A.
Prove whether or not the intersection and union of two uncountable sets must be uncountable
Prove whether or not the intersection and union of two uncountable sets must be uncountable
Given two sets A and B, the intersection of these sets, denoted A ∩ B, is...
Given two sets A and B, the intersection of these sets, denoted A ∩ B, is the set containing the elements that are in both A and B. That is, A ∩ B = {x : x ∈ A and x ∈ B}. Two sets A and B are disjoint if they have no elements in common. That is, if A ∩ B = ∅. Given two sets A and B, the union of these sets, denoted A ∪ B,...
Show by counterexample that the union of two convex sets need not be convex. (A picture...
Show by counterexample that the union of two convex sets need not be convex. (A picture will suffice.) Please write clearly & show all work. Thank you!
show that the relation "≈" is reflexive, symmetric, and transitive on the class of all sets.
show that the relation "≈" is reflexive, symmetric, and transitive on the class of all sets.
SHow that a union of a finite or countable number of sets of lebesgue measure zero...
SHow that a union of a finite or countable number of sets of lebesgue measure zero is a set of lebesgue measure zero. Please show all steps
Prove the union of two infinite countable sets is countable.
Prove the union of two infinite countable sets is countable.
Please show the proof that: Either [a]=[b] or [a] *union* [b] = empty set this will...
Please show the proof that: Either [a]=[b] or [a] *union* [b] = empty set this will be proof by contrapositibe but please show work: theorem: suppose R is an equivalence of a non-empty set A. let a,b be within A then [a] does not equal [b] implies that [a] *intersection* [b] = empty set
Show(prove) that the intersection of two compact sets is compact. I will rate a thumbs up....
Show(prove) that the intersection of two compact sets is compact. I will rate a thumbs up. Thank you.
a) Prove that the union between two countably infinite sets is a countably infinite set. b)...
a) Prove that the union between two countably infinite sets is a countably infinite set. b) Would the statement above hold if we instead started with an infinite amount of countably infinite sets? _________________________________________________ Thank you in advance!