Question

If x1(t) and x2(t) are solutions to the differential equation x"+bx'+cx = 0 1. Is x=...

If x1(t) and x2(t) are solutions to the differential equation

x"+bx'+cx = 0

1. Is x= x1+x2+c for a constant c always a solution? (I think No, except for the case of c=0)
2. Is tx1 a solution? (t is a constant)

I have to show all works of the whole process, please help me!

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. If x1(t) and x2(t) are solutions to the differential equation x" + bx' + cx...
1. If x1(t) and x2(t) are solutions to the differential equation x" + bx' + cx = 0 is x = x1 + x2 + c for a constant c always a solution? Is the function y= t(x1) a solution? Show the works 2. Write sown a homogeneous second-order linear differential equation where the system displays a decaying oscillation.
dX(t) = bX(t)dt + cX(t)dW(t) for contant values of X(0), b and c (a) Find E[X(t)]...
dX(t) = bX(t)dt + cX(t)dW(t) for contant values of X(0), b and c (a) Find E[X(t)] (hint: look at e ^(−bt)X(t)) (b) The Variance of X(t)
Differential equations Given that x1(t) = cos t is a solution of (sin t)x′′ − 2(cos...
Differential equations Given that x1(t) = cos t is a solution of (sin t)x′′ − 2(cos t)x′ − (sin t)x = 0, find a second linearly independent solution of this equation.
Consider the differential equation x^2y′′ − 3xy′ − 5y = 0. Note that this is not...
Consider the differential equation x^2y′′ − 3xy′ − 5y = 0. Note that this is not a constant coefficient differential equation, but it is linear. The theory of linear differential equations states that the dimension of the space of all homogeneous solutions equals the order of the differential equation, so that a fundamental solution set for this equation should have two linearly fundamental solutions. • Assume that y = x^r is a solution. Find the resulting characteristic equation for r....
Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0....
Consider the differential equation t 2 y" + 3ty' + y = 0, t > 0. (a) Check that y1(t) = t −1 is a solution to this equation. (b) Find another solution y2(t) such that y1(t) and y2(t) are linearly independent (that is, y1(t) and y2(t) form a fundamental set of solutions for the differential equation)
x''+8x'+25x=10u(t).....x(0)=0....x'(0)=0 please solve this differential equation and show all steps including the characteristic equation.
x''+8x'+25x=10u(t).....x(0)=0....x'(0)=0 please solve this differential equation and show all steps including the characteristic equation.
Consider the differential equation x′=[2 −2 4 −2], with x(0)=[1 1] Solve the differential equation wherex=[x(t)y(t)]...
Consider the differential equation x′=[2 −2 4 −2], with x(0)=[1 1] Solve the differential equation wherex=[x(t)y(t)] please write as neat as possible better if typed and explain clearly with step by step work
How many solutions are there to equation x1 + x2 + x3 + x4 = 15...
How many solutions are there to equation x1 + x2 + x3 + x4 = 15 where xi , for i = 1, 2, 3, 4, is a nonnegative integer and (a) x1 > 1? (b) xi ≥ i, for i = 1, 2, 3, 4? (c) x1 ≤ 13?
Consider the differential equation x2 dy + y ( x + y) dx = 0 with...
Consider the differential equation x2 dy + y ( x + y) dx = 0 with the initial condition y(1) = 1. (2a) Determine the type of the differential equation. Explain why? (2b) Find the particular solution of the initial value problem.
Find the matrix A in the linear transformation y = Ax,where a point x = [x1,x2]^T...
Find the matrix A in the linear transformation y = Ax,where a point x = [x1,x2]^T is projected on the x2 axis.That is,a point x = [x1,x2]^T is projected on to [0,x2]^T . Is A an orthogonal matrix ?I any case,find the eigen values and eigen vectors of A .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT