Question

Show that there is no matrix with real entries A, such that A^2 = [ 0...

Show that there is no matrix with real entries A, such that A^2 = [ 0 1

0 0 ].

(its a 2x2 matrix)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For some nonzero 2x2 matrix, with its entries in an integral domain, show that the matrix...
For some nonzero 2x2 matrix, with its entries in an integral domain, show that the matrix is a zero divisor IFF det=0. Show an example!
show that a real 2x2 matrix is normal if and only if it is either symmetric...
show that a real 2x2 matrix is normal if and only if it is either symmetric or has the form a b -b a (in matrix form)
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row...
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row 1(a b) row 2 (0 a) | a in R*, b in R} (a) Prove that G is a subgroup of GL(2,R) (b) Prove that G is Abelian
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be...
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be in R 17 , c be in R 20, and 0 be the vector with all zero entries. Show that each of the following statements implies the other. (a) Bx = 0 has only the trivial solution x = 0 n R 17, then (b) If Bx = c has a solution for some vector c in R 20, then the solution is unique.
5. Suppose A is an n × n matrix, whose entries are all real numbers, that...
5. Suppose A is an n × n matrix, whose entries are all real numbers, that has n distinct real eigenvalues. Explain why R n has a basis consisting of eigenvectors of A. Hint: use the “eigenspaces are independent” lemma stated in class. 6. Unlike the previous problem, let A be a 2 × 2 matrix, whose entries are all real numbers, with only 1 eigenvalue λ. (Note: λ must be real, but don’t worry about why this is true)....
A stochastic matrix is a square matrix A with entries 0≤a_ij≤1 such that the sum of...
A stochastic matrix is a square matrix A with entries 0≤a_ij≤1 such that the sum of each column of A is 1. Prove that if A is stochastic, then A^k is stochastic for every positive integer k.
Suppose that A is an invertible n by n matrix, with real valued entries. Which of...
Suppose that A is an invertible n by n matrix, with real valued entries. Which of the following statements are true? Select ALL correct answers. Note: three submissions are allowed for this question. A is row equivalent to the identity matrix In.A has fewer than n pivot positions.The equation Ax=0 has only the trivial solution.For some vector b in Rn, the equation Ax=b has no solution.There is an n by n matrix C such that CA=In.None of the above.
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β...
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β ≠ 0. It was shown in class that the corresponding eigenvectors will be complex. Suppose that a + i b is an eigenvector for α + i β , for some real vectors a , b . Show that a − i b is an eigenvector corresponding to α − i β . Hint: properties of the complex conjugate may be useful. Please show...
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace...
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace of M 2x2. I know that a diagonal matrix is a square of n x n matrix whose nondiagonal entries are zero, such as the n x n identity matrix. But could you explain every step of how to prove that this diagonal matrix is a subspace of M 2x2. Thanks.
Suppose A is a 2x2 matrix whose eigenvalues all have negative real parts. For the system...
Suppose A is a 2x2 matrix whose eigenvalues all have negative real parts. For the system x 0 = Ax, is the origin stable or unstable?