Question

Suppose n ≥ 3 is an integer. Prove that in Sn every even permutation is a...

Suppose n ≥ 3 is an integer. Prove that in Sn every even permutation is a product of cycles of length 3.

Hint: (a, b)(b, c) = (a, b, c) and (a, b)(c, d) = (a, b, c)(b, c, d).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove let n be an integer. Then the following are equivalent. 1. n is an even...
Prove let n be an integer. Then the following are equivalent. 1. n is an even integer. 2.n=2a+2 for some integer a 3.n=2b-2 for some integer b 4.n=2c+144 for some integer c 5. n=2d+10 for some integer d
Prove the following theorem: For every integer n, there is an even integer k such that...
Prove the following theorem: For every integer n, there is an even integer k such that n ≤ k+1 < n + 2. Your proof must be succinct and cannot contain more than 60 words, with equations or inequalities counting as one word. Type your proof into the answer box. If you need to use the less than or equal symbol, you can type it as <= or ≤, but the proof can be completed without it.
Prove the following theorem: For every integer n, there is an even integer k such that...
Prove the following theorem: For every integer n, there is an even integer k such that n ≤ k+1 < n + 2. Your proof must be succinct and cannot contain more than 60 words, with equations or inequalities counting as one word. Type your proof into the answer box. If you need to use the less than or equal symbol, you can type it as <= or ≤, but the proof can be completed without it.
Prove or disprove that 3|(n^3 − n) for every positive integer n.
Prove or disprove that 3|(n^3 − n) for every positive integer n.
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
Prove that every integer of the form 5n + 3 for n ∈ Z, n ≥...
Prove that every integer of the form 5n + 3 for n ∈ Z, n ≥ 1, cannot be a perfect square
Show 2 different solutions to the task. Prove that for every integer n (...-3, -2, -1,...
Show 2 different solutions to the task. Prove that for every integer n (...-3, -2, -1, 0, 1, 2, 3, 4...), the expression n2 + n will always be even.
Define sequences (sn) and (tn) as follows: if n is even, sn=n and tn=1/n if n...
Define sequences (sn) and (tn) as follows: if n is even, sn=n and tn=1/n if n is odd, sn=1/n and tn=n, Prove that both (sn) and (tn) have convergent subsequences, but that (sn+tn) does not
(a) Let N be an even integer, prove that GCD (N + 2, N) = 2....
(a) Let N be an even integer, prove that GCD (N + 2, N) = 2. (b) What’s the GCD (N + 2, N) if N is an odd integer?
1.for all integer n amd m, if n-m is even then n^3-m^3 is even 2.) for...
1.for all integer n amd m, if n-m is even then n^3-m^3 is even 2.) for all int m, ifm>2 then m^2-4 is composite 3.) for all int ab c, if a|b and b|c then a|c prove true or give counterexample asap plz,