Question

Show that if G has no nontrivial proper subgroups, then G is cyclic.

Show that if G has no nontrivial proper subgroups, then G is cyclic.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that a cyclic group G has exactly three subgroups: G itself, e, and a subgroup...
Suppose that a cyclic group G has exactly three subgroups: G itself, e, and a subgroup of order p, where p is a prime greater than 2. Determine |G|
Find all cyclic subgroups of U(30).
Find all cyclic subgroups of U(30).
Find all the cyclic subgroups of the dihedral group D6
Find all the cyclic subgroups of the dihedral group D6
Suppose that H is a proper subgroup of G of index n, and that G is...
Suppose that H is a proper subgroup of G of index n, and that G is a simple group, that is, G has no normal subgroups except G itself and {1}. Show thatG can be embedded in Sn.
For each of the following groups, find all the cyclic subgroups: Z10 Zx10
For each of the following groups, find all the cyclic subgroups: Z10 Zx10
A group G is a simple group if the only normal subgroups of G are G...
A group G is a simple group if the only normal subgroups of G are G itself and {e}. In other words, G is simple if G has no non-trivial proper normal subgroups. Algebraists have proven (using more advanced techniques than ones we’ve discussed) that An is a simple group for n ≥ 5. Using this fact, prove that for n ≥ 5, An has no subgroup of order n!/4 . (This generalizes HW5,#3 as well as our counterexample from...
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove...
Let p,q be prime numbers, not necessarily distinct. If a group G has order pq, prove that any proper subgroup (meaning a subgroup not equal to G itself) must be cyclic. Hint: what are the possible sizes of the subgroups?
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a...
2.6.22. Let G be a cyclic group of order n. Let m ≤ n be a positive integer. How many subgroups of order m does G have? Prove your assertion.
if p and q are primes, show that every proper subgroup of a group of order...
if p and q are primes, show that every proper subgroup of a group of order pq is cyclic
Let G be a group with subgroups H and K. (a) Prove that H ∩ K...
Let G be a group with subgroups H and K. (a) Prove that H ∩ K must be a subgroup of G. (b) Give an example to show that H ∪ K is not necessarily a subgroup of G. Note: Your answer to part (a) should be a general proof that the set H ∩ K is closed under the operation of G, includes the identity element of G, and contains the inverse in G of each of its elements,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT