Question

For problems 3-6, note that if y(t) is a solution of the homogeneous problem, then y(t−t0)...

For problems 3-6, note that if y(t) is a solution of the homogeneous problem, then y(t−t0) is a solution as well, where t0 is a fixed constant. So, for example, the general solution of a problem with complex roots can be expressed as y(x) = c1e µ(t−t0) cos(ω(t − t0)) + c1e µ(t−t0) sin(ω(t − t0)) When initial conditions are given at time t = t0 and not t = 0, expressing the general solution in terms of t − t0 will result in simpler equations for the constants c1 and c2.

2y'' + y' − 10y = 0, y(1) = 5, y' (1) = 2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q.3 (Applications of Linear Second Order ODE): Consider the ‘equation of motion’ given by ODE d2x...
Q.3 (Applications of Linear Second Order ODE): Consider the ‘equation of motion’ given by ODE d2x + ω2x = F0 cos(γt) dt2 where F0 and ω ̸= γ are constants. Without worrying about those constants, answer the questions (a)–(b). (a) Show that the general solution of the given ODE is [2 pts] x(t) := xc + xp = c1 cos(ωt) + c2 sin(ωt) + (F0 / ω2 − γ2) cos(γt). (b) Find the values of c1 and c2 if the...
Non homogeneous eq w constant; undetermined coefficients Find the general solution: 1) y" + 4y' +...
Non homogeneous eq w constant; undetermined coefficients Find the general solution: 1) y" + 4y' + 4y = xe^−x. 2) y" + 2y' + 5y = e^2x cos x. Determine a suitable form for a particular solution z = z(x) of the given equations 1) y" + 2y' = 2x + x^2e^−3x + sin 2x. 2) y" − 5y' + 6y = 2e^2x cos x − 3xe^3x + 5. 3) y" + 5y' + 6y = 2e^2x cos x −...
3. Find the general solution to each of the following differential equations. (a) y'' - 3y'...
3. Find the general solution to each of the following differential equations. (a) y'' - 3y' + 2y = 0 (b) y'' - 10y' = 0 (c) y'' + y' - y = 0 (d) y'' + 2y' + y = 0
Verify that the function ϕ(t)=c1e^−t+c2e^−2t is a solution of the linear equation y′′+3y′+2y=0 for any choice...
Verify that the function ϕ(t)=c1e^−t+c2e^−2t is a solution of the linear equation y′′+3y′+2y=0 for any choice of the constants c1c1 and c2c2. Determine c1c1 and c2c2 so that each of the following initial conditions is satisfied: (a) y(0)=−1,y′(0)=4 (b) y(0)=2,y′(0)=0
Given y1(t)=t^2 and y2(t)=t^-1 satisfy the corresponding homogeneous equation of t^2y''−2y=2−t3,  t>0 Then the general solution to...
Given y1(t)=t^2 and y2(t)=t^-1 satisfy the corresponding homogeneous equation of t^2y''−2y=2−t3,  t>0 Then the general solution to the non-homogeneous equation can be written as y(t)=c1y1(t)+c2y2(t)+yp(t) yp(t) =
Question 11: What is the general solution of the following homogeneous second-order differential equation? d^2y/dx^2 +...
Question 11: What is the general solution of the following homogeneous second-order differential equation? d^2y/dx^2 + 10 dy/dx + 25.y =0 (a) y = e 12.5.x (Ax + B) (b) y = e -5.x (Ax + B) (c) y = e -10.x (Ax + B) (d) y = e +5.x (Ax + B) Question 12: What is the general solution of the following homogeneous second-order differential equation? Non-integers are expressed to one decimal place. d^2y/dx^2 − 38.y =0 (a) y...
In this problem, x = c1 cos t + c2 sin t is a two-parameter family...
In this problem, x = c1 cos t + c2 sin t is a two-parameter family of solutions of the second-order DE x'' + x = 0. Find a solution of the second-order IVP consisting of this differential equation and the given initial conditions. x(π/6) = 1 2 , x'(π/6) = 0 x=
Consider the differential equation L[y] = y′′ + p(t)y′ + q(t)y = f(t) + g(t), and...
Consider the differential equation L[y] = y′′ + p(t)y′ + q(t)y = f(t) + g(t), and suppose L[yf] = f(t) and L[yg] = g(t). Explain why yp = yf + yg is a solution to L[y] = f + g. Suppose y and y ̃ are both solutions to L[y] = f + g, and suppose {y1, y2} is a fundamental set of solutions to the homogeneous equation L[y] = 0. Explain why y = C1y1 + C2y2 + yf...
(1 point) Match the following nonhomogeneous linear equations with the form of the particular solution yp...
(1 point) Match the following nonhomogeneous linear equations with the form of the particular solution yp for the method of undetermined coefficients.   ?    A    B    C    D      1. y′′+y=t(1+sint)   ?    A    B    C    D      2. y′′+4y=t2sin(2t)+(5t−7)cos(2t)   ?    A    B    C    D      3. y′′+2y′+2y=3e−t+2e−tcost+4e−tt2sint   ?    A    B    C    D      4. y′′−4y′+4y=2t2+4te2t+tsin(2t) A. yp=t(A0t2+A1t+A2)sin(2t)+t(B0t2+B1t+B2)cos(2t) B. yp=A0t2+A1t+A2+t2(B0t+B1)e2t+(C0t+C1)sin(2t)+(D0t+D1)cos(2t) C. yp=Ae−t+t(B0t2+B1t+B2)e−tcost+t(C0t2+C1t+C2)e−tsint D. yp=A0t+A1+t(B0t+B1)sint+t(C0t+C1)cost
For 2y' = -tan(t)(y^2-1) find general solution (solve for y(t)) and solve initial value problem y(0)...
For 2y' = -tan(t)(y^2-1) find general solution (solve for y(t)) and solve initial value problem y(0) = -1/3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT