Question

find the solution of the given initial value problem 1. y''+y'−2y=0, y(0) =1, y'(0) =1 2....

find the solution of the given initial value problem

1. y''+y'−2y=0, y(0) =1, y'(0) =1

2. 6y''−5y'+y=0, y(0) =4, y'(0) =0

3. y''+5y'+3y=0, y(0) =1, y'(0) =0

4. y''+8y'−9y=0, y(1) =1, y'(1) =0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
find the general solution of the given differential equation 1. y''−2y'+2y=0 2. y''+6y'+13y=0 find the solution...
find the general solution of the given differential equation 1. y''−2y'+2y=0 2. y''+6y'+13y=0 find the solution of the given initial value problem 1. y''+4y=0, y(0) =0, y'(0) =1 2. y''−2y'+5y=0, y(π/2) =0, y'(π/2) =2 use the method of reduction of order to find a second solution of the given differential equation. 1. t^2 y''+3ty'+y=0, t > 0; y1(t) =t^−1
Solve the initial value problem y''−y'−2y=0, y(0) = α, y'(0) =2. Then find α so that...
Solve the initial value problem y''−y'−2y=0, y(0) = α, y'(0) =2. Then find α so that the solution approaches zero as t →∞
Solve the initial-value problem. y"-6y'+9y=0; y(0)=2, y'(0)=3 Given that y1=x2 is a solution to y"+(1/x) y'-(4/x2)...
Solve the initial-value problem. y"-6y'+9y=0; y(0)=2, y'(0)=3 Given that y1=x2 is a solution to y"+(1/x) y'-(4/x2) y=0, find a second, linearly independent solution y2. Find the Laplace transform. L{t2 * tet} Thanks for solving!
Find y(t) solution of the initial value problem 3ty^2y'-6y^3-4t^2=0, y(1)=1, t>0
Find y(t) solution of the initial value problem 3ty^2y'-6y^3-4t^2=0, y(1)=1, t>0
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
Question : y''+6y'+9y=0,y(0)=2,y'(0)=1 , 4y''+12y'+9y=0,y(0)=2,y'(0)=2 y''-y'-2y=cosx , y''+3y'+2y=x^2 - e^2x , y''-3y'+2y=sinx  , y''-2y'-3y=3e^2x
Find the solution of the given initial value problem: y(4)+2y′′+y=5t+2; y(0)=y′(0)=0, y′′(0)=y'''(0)=1
Find the solution of the given initial value problem: y(4)+2y′′+y=5t+2; y(0)=y′(0)=0, y′′(0)=y'''(0)=1
Use Laplace transforms to solve the given initial value problem. y"-2y'+5y=1+t y(0)=0 y’(0)=4
Use Laplace transforms to solve the given initial value problem. y"-2y'+5y=1+t y(0)=0 y’(0)=4
solve the given initial value problem y''-5y'+6y=0, y(0)=3/5, y'(0)=1
solve the given initial value problem y''-5y'+6y=0, y(0)=3/5, y'(0)=1
Verify that the given function is the solution of the initial value problem. 1. A) x^3y'''-3x^2y''+6xy'-6y=...
Verify that the given function is the solution of the initial value problem. 1. A) x^3y'''-3x^2y''+6xy'-6y= -(24/x) y(-1)=0 y'(-1)=0 y''(-1)=0 y=-6x-8x^2-3x^3+(1/x) C) xy'''-y''-xy'+y^2= x^2 y(1)=2 y'(1)=5 y''(1)=-1 y=-x^2-2+2e^(x-1-e^-(x-1))+4x
Solve the given initial-value problem. y''' + 6y'' + 9y' = 0,  y(0) = 0, y'(0) =...
Solve the given initial-value problem. y''' + 6y'' + 9y' = 0,  y(0) = 0, y'(0) = 1, y''(0) = −6