Question

Are there any integers p such that p > 1, and such that all three numbers...

Are there any integers p such that p > 1, and such that all three

numbers p, p+2 and p+4 are prime numbers? If there are such triples, prove that

you have all of them; if there are no such triples, prove why not.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation. you may use the following lemma: If p is prime and p|mn, then p|m or p|n
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. I need to prove that: a) R is an equivalence relation. (which I have) b) The equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq I...
Prove: For all positive integers n, the numbers 7n+ 5 and 7n+ 12 are relatively prime.
Prove: For all positive integers n, the numbers 7n+ 5 and 7n+ 12 are relatively prime.
Consider all integers between 1 and pq where p and q are two distinct primes. We...
Consider all integers between 1 and pq where p and q are two distinct primes. We choose one of them, all with equal probability. a) What is the probability that we choose any given number? b) What is the probability that we choose a number that is i) relatively prime to p? ii) relatively prime to q? iii) relatively prime to pq?
Prove that for any integer a, k and prime p, the following three statements are all...
Prove that for any integer a, k and prime p, the following three statements are all equivalent: p divides a, p divides a^k, and p^k divides a^k.
.Prove that for all integers n > 4, if n is a perfect square, then n−1...
.Prove that for all integers n > 4, if n is a perfect square, then n−1 is not prime.
1. Let Z[i] denote the set of all ‘complex numbers with integer coefficients’:the set of all...
1. Let Z[i] denote the set of all ‘complex numbers with integer coefficients’:the set of all a + bi such that a and b are integers. We say that z is composite if there exist two complex integers v and w such that z=vw and |v|>1 and |w|>1. Then z is prime if it is not composite A) Prove that every complex integer z, |z| > 1, can be expressed as a product of prime complex integers.
Prove deductively that for any three consecutive odd integers, one of them is divisible by 3
Prove deductively that for any three consecutive odd integers, one of them is divisible by 3
Prove that n − 1 and 2n − 1 are relatively prime, for all integers n...
Prove that n − 1 and 2n − 1 are relatively prime, for all integers n > 1.
Prove that The set P of all prime numbers is a closed subset of R but...
Prove that The set P of all prime numbers is a closed subset of R but not an open subset of R.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT