Question

1. Solve the given initial value problem. dy/dt = (t^3 + t)/(y^2); y(0) = 2 ....

1. Solve the given initial value problem. dy/dt = (t^3 + t)/(y^2); y(0) = 2 .

2. We know from Newton’s Law of Cooling that the rate at which a cold soda warms up is proportional to the difference between the ambient temperature of the room and the temperature of the drink. The differential equation corresponding to this situation is given by y' = k(M − y) where k is a positive constant. The solution to this equation is given by y = M + (y0 − M)e^−kt, where y0 is the initial temperature of the soda.

a) Suppose the room is held at a steady temperature of 70 degrees Fahrenheit, a cold soda is initially 45 degrees Fahrenheit, and after 2 hours the soda’s temperature has risen to 60 degrees Fahrenheit. Find the values of k, M, and y0 for this situation.

b) Using your answers from above, when will the soda reach 68 degrees Fahrenheit?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
dT/dt = k(T − A), where T is the temperature of the object, t is time,...
dT/dt = k(T − A), where T is the temperature of the object, t is time, k is the proportionality constant, and A is the constant ambient temperature. T (t) = A + Ce^kt is the general solution. Apply the solution to the following scenario: A Police Department officer discovered a corpse in a downtown alley at 1130pm on a night where the constant temperature was 40 degrees Fahrenheit. As she had been trained to do, she immediately recorded the...
Solve the initial value problem 8(t+1)dy/dt - 6y = 12t for t > -1 with y(0)...
Solve the initial value problem 8(t+1)dy/dt - 6y = 12t for t > -1 with y(0) = 7 7 =
Solve the initial value problem 8(t+1)dy/dt−6y=12t, for t>−1 with y(0)=11.
Solve the initial value problem 8(t+1)dy/dt−6y=12t, for t>−1 with y(0)=11.
dx/dt - 3(dy/dt) = -x+2 dx/dt + dy/dt = y+t Solve the system by obtaining a...
dx/dt - 3(dy/dt) = -x+2 dx/dt + dy/dt = y+t Solve the system by obtaining a high order linear differential equation for the unknown function of x (t).
1. Solve the following initial value problem using Laplace transforms. d^2y/dt^2+ y = g(t) with y(0)=0...
1. Solve the following initial value problem using Laplace transforms. d^2y/dt^2+ y = g(t) with y(0)=0 and dy/dt(0) = 1 where g(t) = t/2 for 0<t<6 and g(t) = 3 for t>6
solve the given initial value problem. y(cos2t)e^ty - 2(sin2t)e^ty + 2t + (t(cos2t)e^ty - 3) dy/dt...
solve the given initial value problem. y(cos2t)e^ty - 2(sin2t)e^ty + 2t + (t(cos2t)e^ty - 3) dy/dt = 0, y(0)=0
Solve the initial value problem t^(13) (dy/dt) +2t^(12) y =t^25 with t>0 and y(1)=0 (y'-e^-t+4)/y=-4, y(0)=-1
Solve the initial value problem t^(13) (dy/dt) +2t^(12) y =t^25 with t>0 and y(1)=0 (y'-e^-t+4)/y=-4, y(0)=-1
Initial value problem dy/dt=(6t^5/1+t^6)y+7(1+t^6)^2 y(1)=8
Initial value problem dy/dt=(6t^5/1+t^6)y+7(1+t^6)^2 y(1)=8
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
solve the given initial value problem dx/dt=7x+y x(0)=1 dt/dt=-6x+2y y(0)=0 the solution is x(t)= and y(t)=
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14....
Solve the initial value problem 9(t+1) dy dt −6y=18t, 9(t+1)dydt−6y=18t, for t>−1 t>−1 with y(0)=14. y(0)=14. Find the integrating factor, u(t)= u(t)= , and then find y(t)= y(t)=