Question

Let G be a finite Abelian group and let n be a positive divisor of|G|. Show...

Let G be a finite Abelian group and let n be a positive divisor of|G|. Show that G has a subgroup of order n.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let n be a positive integer. Show that every abelian group of order n is cyclic...
Let n be a positive integer. Show that every abelian group of order n is cyclic if and only if n is not divisible by the square of any prime.
: (a) Let p be a prime, and let G be a finite Abelian group. Show...
: (a) Let p be a prime, and let G be a finite Abelian group. Show that Gp = {x ∈ G | |x| is a power of p} is a subgroup of G. (For the identity, remember that 1 = p 0 is a power of p.) (b) Let p1, . . . , pn be pair-wise distinct primes, and let G be an Abelian group. Show that Gp1 , . . . , Gpn form direct sum in...
Suppose that G is a finite Abelian group that has exactly one subroup for each divisor...
Suppose that G is a finite Abelian group that has exactly one subroup for each divisor of the order of G. Show that G is cyclic. provide explanation.
Let G be an Abelian group and let H be a subgroup of G Define K...
Let G be an Abelian group and let H be a subgroup of G Define K = { g∈ G | g3 ∈ H }. Prove that K is a subgroup of G .
Let G be an Abelian group and H a subgroup of G. Prove that G/H is...
Let G be an Abelian group and H a subgroup of G. Prove that G/H is Abelian.
Let G be an abelian group and S ≤ G. Show that S ⊲ G and...
Let G be an abelian group and S ≤ G. Show that S ⊲ G and that G/S is abelian I need an explanation with some details
Let G be an abelian group, let H = {x in G | (x^3) = eg},...
Let G be an abelian group, let H = {x in G | (x^3) = eg}, where eg is the identity of G. Prove that H is a subgroup of G.
Let G be a finite group and let H be a subgroup of order n. Suppose...
Let G be a finite group and let H be a subgroup of order n. Suppose that H is the only subgroup of order n. Show that H is normal in G. Hint: Consider the subgroup aHa-1 of G. Please explain in detail!
For an abelian group G, let tG = {x E G: x has finite order} denote...
For an abelian group G, let tG = {x E G: x has finite order} denote its torsion subgroup. Show that t defines a functor Ab -> Ab if one defines t(f) = f|tG (f restricted on tG) for every homomorphism f. If f is injective, then t(f) is injective. Give an example of a surjective homomorphism f for which t(f) is not surjective.
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)|...
Let G be a non-abelian group of order p^3 with p prime. (a) Show that |Z(G)| = p. (b) Suppose a /∈ Z(G). Show that |NG(a)| = p^2 . (c) Show that G has exactly p 2 +p−1 conjugacy classes (don’t forget to count the classes of the elements of Z(G)).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT