Question

let T:V to W be a linear transdormation of vector space V and W and let...

let T:V to W be a linear transdormation of vector space V and W and let B=(v1,v2,...,vn) be a basis for V. Show that if (Tv1,Tv2,...,Tvn) is linearly independent, thenT is injecfive.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
† Let β={v1,v2,…,vn} be a basis for a vector space V and T:V→V be a linear...
† Let β={v1,v2,…,vn} be a basis for a vector space V and T:V→V be a linear transformation. Prove that [T]β is upper triangular if and only if T(vj)∈span({v1,v2,…,vj}) j=1,2,…,n. Visit goo.gl/k9ZrQb for a solution.
4. Prove the Following: a. Prove that if V is a vector space with subspace W...
4. Prove the Following: a. Prove that if V is a vector space with subspace W ⊂ V, and if U ⊂ W is a subspace of the vector space W, then U is also a subspace of V b. Given span of a finite collection of vectors {v1, . . . , vn} ⊂ V as follows: Span(v1, . . . , vn) := {a1v1 + · · · + anvn : ai are scalars in the scalar field}...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define...
Let {V1, V2,...,Vn} be a linearly independent set of vectors choosen from vector space V. Define w1=V1, w2= v1+v2, w3=v1+ v2+v3,..., wn=v1+v2+v3+...+vn. (a) Show that {w1, w2, w3...,wn} is a linearly independent set. (b) Can you include that {w1,w2,...,wn} is a basis for V? Why or why not?
Let V be a vector space and let v1,v2,...,vn be elements of V . Let W...
Let V be a vector space and let v1,v2,...,vn be elements of V . Let W = span(v1,...,vn). Assume v ∈ V and ˆ v ∈ V but v / ∈ W and ˆ v / ∈ W. Define W1 = span(v1,...,vn,v) and W2 = span(v1,...,vn, ˆ v). Prove that either W1 = W2 or W1 ∩W2 = W.
Let V and W be vector spaces and let T:V→W be a linear transformation. We say...
Let V and W be vector spaces and let T:V→W be a linear transformation. We say a linear transformation S:W→V is a left inverse of T if ST=Iv, where ?v denotes the identity transformation on V. We say a linear transformation S:W→V is a right inverse of ? if ??=?w, where ?w denotes the identity transformation on W. Finally, we say a linear transformation S:W→V is an inverse of ? if it is both a left and right inverse of...
5. Prove or disprove the following statements. (a) Let L : V → W be a...
5. Prove or disprove the following statements. (a) Let L : V → W be a linear mapping. If {L(~v1), . . . , L( ~vn)} is a basis for W, then {~v1, . . . , ~vn} is a basis for V. (b) If V and W are both n-dimensional vector spaces and L : V → W is a linear mapping, then nullity(L) = 0. (c) If V is an n-dimensional vector space and L : V →...
Let V and W be finite-dimensional vector spaces over F, and let φ : V →...
Let V and W be finite-dimensional vector spaces over F, and let φ : V → W be a linear transformation. Let dim(ker(φ)) = k, dim(V ) = n, and 0 < k < n. A basis of ker(φ), {v1, . . . , vk}, can be extended to a basis of V , {v1, . . . , vk, vk+1, . . . , vn}, for some vectors vk+1, . . . , vn ∈ V . Prove that...
Suppose v1, v2, . . . , vn is linearly independent in V and w ∈...
Suppose v1, v2, . . . , vn is linearly independent in V and w ∈ V . Show that v1, v2, . . . , vn, w is linearly independent if and only if w ∈/ Span(v1, v2, . . . , vn).
Let T be a 1-1 linear transformation from a vector space V to a vector space...
Let T be a 1-1 linear transformation from a vector space V to a vector space W. If the vectors u, v and w are linearly independent in V, prove that T(u), T(v), T(w) are linearly independent in W
1. Let v1,…,vn be a basis of a vector space V. Show that (a) for any...
1. Let v1,…,vn be a basis of a vector space V. Show that (a) for any non-zero λ1,…,λn∈R, λ1v1,…,λnvn is also a basis of V. (b) Let ui=v1+⋯+vi, 1≤i≤n. Show that u1,…,un is a basis of V.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT