Question

For the rule {Brushes} -> {Nail Polish}, find support, confidence, lift, and conviction manually. Show the...

  1. For the rule {Brushes} -> {Nail Polish}, find support, confidence, lift, and conviction manually. Show the ratios in your computation along with the final values. Interpret each of the values. (10 points)
  2. Now, for the rule, {Nail Polish} -> {Brushes}, find support, confidence, lift, and conviction manually. Show the ratios in your computation along with the final values. Interpret each of the values. (10 points)
  3. Which of the above two rules would you recommend for guiding sales personnel in promoting cross sales, and why? (5 points)
    TransacID Bag Blush Nail Polish Brushes Concealer Eyebrow Pencils Bronzer
    1 0 1 1 1 1 0 1
    2 0 0 1 0 1 0 1
    3 0 1 0 0 1 1 1
    4 0 0 1 1 1 0 1
    5 0 1 0 0 1 0 1
    6 0 0 0 0 1 0 0
    7 0 1 1 1 1 0 1
    8 0 0 1 1 0 0 1
    9 0 0 0 0 1 0 0
    10 1 1 1 1 0 0 0
    11 0 0 1 0 0 0 1
    12 0 0 1 1 1 0 1

Homework Answers

Answer #1

Association Rules Execution through XLMiner

Steps to follow in XLMiner

Step 1:

Select XLminer -> Associate -> Association Rules

Step 2:

In Association Rules box select the worksheet where the cosmetics data present and check the box “Data in binary matrix foramt” in Input Data Foramt. In parameters box by default the “Minimum support” will be 20% of the total transctions. Here the total number of trasnctions are 1000 and hence the minimum support is 200. Minimum Confidence should be given in input. Here the input value is 40%. Generally the acceptable confidence level is more than 50%.

Step 3:

The below are the input details.

Step 4:

List of Rules in Sorted order of Lift Ratio.

Steps to follow in R

#Specify the libraries required
library("xlsx")
library("Matrix")
library("arules")
#library("arulesViz")

#Set working directory 
setwd("J:\\ISB Business Analytics\\Data Mining\\Data Mining Assignment 2")

#Read the data
mydata<-read.xlsx("Cosmetics.xls", sheetName = "Sheet1")
#first records of data 
head(mydata)
##   Trans.. Bag Blush Nail.Polish Brushes Concealer Eyebrow.Pencils Bronzer
## 1       1   0     1           1       1         1               0       1
## 2       2   0     0           1       0         1               0       1
## 3       3   0     1           0       0         1               1       1
## 4       4   0     0           1       1         1               0       1
## 5       5   0     1           0       0         1               0       1
## 6       6   0     0           0       0         1               0       0
##   Lip.liner Mascara Eye.shadow Foundation Lip.Gloss Lipstick Eyeliner
## 1         1       1          0          0         0        0        1
## 2         1       0          0          1         1        0        0
## 3         1       1          1          1         1        1        0
## 4         0       0          0          1         0        0        1
## 5         1       1          1          0         1        1        0
## 6         0       0          0          0         0        0        1
#trailer records of data
tail(mydata)
##      Trans.. Bag Blush Nail.Polish Brushes Concealer Eyebrow.Pencils
## 995      995   0     1           0       0         0               0
## 996      996   0     0           0       0         0               0
## 997      997   0     0           0       0         0               0
## 998      998   0     1           1       1         1               0
## 999      999   1     1           0       0         1               0
## 1000    1000   0     0           0       0         1               0
##      Bronzer Lip.liner Mascara Eye.shadow Foundation Lip.Gloss Lipstick
## 995        0         0       1          1          1         1        0
## 996        0         0       0          0          0         0        0
## 997        0         0       0          0          1         1        0
## 998        0         1       0          0          1         0        1
## 999        0         0       1          1          0         0        1
## 1000       1         1       0          1          0         0        0
##      Eyeliner
## 995         0
## 996         0
## 997         0
## 998         1
## 999         1
## 1000        1
#Number of rows in the data set
nrow(mydata)
## [1] 1000
#Number of columns in the data set
ncol(mydata)
## [1] 15
#Summary
summary(mydata)
##     Trans..            Bag            Blush        Nail.Polish  
##  Min.   :   1.0   Min.   :0.000   Min.   :0.000   Min.   :0.00  
##  1st Qu.: 250.8   1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.00  
##  Median : 500.5   Median :0.000   Median :0.000   Median :0.00  
##  Mean   : 500.5   Mean   :0.054   Mean   :0.363   Mean   :0.28  
##  3rd Qu.: 750.2   3rd Qu.:0.000   3rd Qu.:1.000   3rd Qu.:1.00  
##  Max.   :1000.0   Max.   :1.000   Max.   :1.000   Max.   :1.00  
##     Brushes        Concealer     Eyebrow.Pencils    Bronzer     
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000  
##  Median :0.000   Median :0.000   Median :0.000   Median :0.000  
##  Mean   :0.149   Mean   :0.442   Mean   :0.042   Mean   :0.279  
##  3rd Qu.:0.000   3rd Qu.:1.000   3rd Qu.:0.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##    Lip.liner        Mascara        Eye.shadow      Foundation   
##  Min.   :0.000   Min.   :0.000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000   1st Qu.:0.000  
##  Median :0.000   Median :0.000   Median :0.000   Median :1.000  
##  Mean   :0.234   Mean   :0.357   Mean   :0.381   Mean   :0.536  
##  3rd Qu.:0.000   3rd Qu.:1.000   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.000   Max.   :1.000   Max.   :1.000   Max.   :1.000  
##    Lip.Gloss       Lipstick        Eyeliner    
##  Min.   :0.00   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.00   1st Qu.:0.000   1st Qu.:0.000  
##  Median :0.00   Median :0.000   Median :0.000  
##  Mean   :0.49   Mean   :0.322   Mean   :0.457  
##  3rd Qu.:1.00   3rd Qu.:1.000   3rd Qu.:1.000  
##  Max.   :1.00   Max.   :1.000   Max.   :1.000
# Apriori application
# Support will indicate the percentage of transctions, Here it's 20% and confidence is 40% 
rules = apriori(as.matrix(mydata[,2:15]), parameter=list(support=0.1, confidence=0.80,minlen=2))
## Apriori
## 
## Parameter specification:
##  confidence minval smax arem  aval originalSupport support minlen maxlen
##         0.8    0.1    1 none FALSE            TRUE     0.1      2     10
##  target   ext
##   rules FALSE
## 
## Algorithmic control:
##  filter tree heap memopt load sort verbose
##     0.1 TRUE TRUE  FALSE TRUE    2    TRUE
## 
## Absolute minimum support count: 100 
## 
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[14 item(s), 1000 transaction(s)] done [0.00s].
## sorting and recoding items ... [12 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [26 rule(s)] done [0.00s].
## creating S4 object  ... done [0.00s].
rules
## set of 26 rules
# Output of Apriori with first 15 rules 
rules15 <- inspect(head(sort(rules, by="lift"),15))
##    lhs                                rhs           support confidence
## 1  {Brushes}                       => {Nail.Polish} 0.149   1.0000000 
## 23 {Blush,Concealer,Eye.shadow}    => {Mascara}     0.119   0.9596774 
## 15 {Blush,Eye.shadow}              => {Mascara}     0.169   0.9285714 
## 10 {Nail.Polish,Eye.shadow}        => {Mascara}     0.119   0.9083969 
## 20 {Concealer,Eye.shadow}          => {Mascara}     0.179   0.8905473 
## 12 {Bronzer,Eye.shadow}            => {Mascara}     0.124   0.8794326 
## 25 {Concealer,Eye.shadow,Eyeliner} => {Mascara}     0.114   0.8769231 
## 14 {Blush,Mascara}                 => {Eye.shadow}  0.169   0.9184783 
## 8  {Eye.shadow,Lipstick}           => {Mascara}     0.110   0.8527132 
## 7  {Mascara,Lipstick}              => {Eye.shadow}  0.110   0.9090909 
## 22 {Blush,Concealer,Mascara}       => {Eye.shadow}  0.119   0.9083969 
## 11 {Bronzer,Mascara}               => {Eye.shadow}  0.124   0.9051095 
## 2  {Mascara}                       => {Eye.shadow}  0.321   0.8991597 
## 3  {Eye.shadow}                    => {Mascara}     0.321   0.8425197 
## 9  {Nail.Polish,Mascara}           => {Eye.shadow}  0.119   0.8880597 
##    lift    
## 1  3.571429
## 23 2.688172
## 15 2.601040
## 10 2.544529
## 20 2.494530
## 12 2.463397
## 25 2.456367
## 14 2.410704
## 8  2.388552
## 7  2.386065
## 22 2.384244
## 11 2.375615
## 2  2.359999
## 3  2.359999
## 9  2.330865
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions