Question

Prove: Let x and y be bounded sequences such that xn ≤ yn for all n...

Prove: Let x and y be bounded sequences such that xn ≤ yn for all n ∈ N. Then lim supn→∞ xn ≤ lim supn→∞ yn and lim infn→∞ xn ≤ lim infn→∞ yn.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let ( xn) and (yn) be sequence with xn converge to x and yn converge to...
Let ( xn) and (yn) be sequence with xn converge to x and yn converge to y. prove that for dn=((xn-x)^2+(yn-y)^2)^(1/2), dn converge to 0.
Let x = {x} and y ={y} represent bounded sequences of real numbers, z = x...
Let x = {x} and y ={y} represent bounded sequences of real numbers, z = x + y, prove the following: supX + supY = supZ where sup represents the supremum of each sequence.
If lim Xn as n->infinity = L and lim Yn as n->infinity = M, and L<M...
If lim Xn as n->infinity = L and lim Yn as n->infinity = M, and L<M then there exists N in naturals such that Xn<Yn for all n>=N
Let {xn} be a non-decreasing sequence and assume that xn goes to x as n goes...
Let {xn} be a non-decreasing sequence and assume that xn goes to x as n goes to infinity. Show that for all, n in N (naturals), xn < x. Formulate and prove an analogous result for a non-increasing sequences.
Let S be the collection of all sequences of real numbers and define a relation on...
Let S be the collection of all sequences of real numbers and define a relation on S by {xn} ∼ {yn} if and only if {xn − yn} converges to 0. a) Prove that ∼ is an equivalence relation on S. b) What happens if ∼ is defined by {xn} ∼ {yn} if and only if {xn + yn} converges to 0?
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn|...
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn| ≤ θn  for n = 1, 2, . . .. a) Show that for any 1 ≤ n < m one has |xm − xn| ≤ (θn/ 1-θ )*(1 − θ m−n ). Conclude that (xn) is Cauchy b)If lim xn = x* , prove the following error in approximation (the "error in approximation" is the same as error estimation in Taylor Theorem) in t:...
Let (X1, Y1), . . . ,(Xn, Yn), be a random sample from a bivariate normal...
Let (X1, Y1), . . . ,(Xn, Yn), be a random sample from a bivariate normal distribution with parameters µ1, µ2, σ2 1 , σ2 2 , ρ. (Note: (X1, Y1), . . . ,(Xn, Yn) are independent). What is the joint distribution of (X ¯ , Y¯ )?
If Xn is a cauchy sequence and Yn is also a cauchy sequence, then prove that...
If Xn is a cauchy sequence and Yn is also a cauchy sequence, then prove that Xn+Yn is also a cauchy sequence
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that...
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that lim n→∞ (x1 + x2 + · · · + xn)/ n = 0 .
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn...
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn be the maximum of X1, X2, ..., Xn. (a) Give the pdf of Yn. (b) Find the mean of Yn. (c) One estimator of θ that has been proposed is Yn. You may note from your answer to part (b) that Yn is a biased estimator of θ. However, cYn is unbiased for some constant c. Determine c. (d) Find the variance of cYn,...