Question

Let P and Q be polynomials of degree at least one and let a be the...

Let P and Q be polynomials of degree at least one and let a be the lead coefficient of P and b be the lead coefficient of Q. Prove that

lim as n approaches infinity of P(n)/Q(n) = 0 deg Q > deg P

a/b deg Q = deg P

infinity deg Q < deg P

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that...
5. Let S be the set of all polynomials p(x) of degree ≤ 4 such that p(-1)=0. (a) Prove that S is a subspace of the vector space of all polynomials. (b) Find a basis for S. (c) What is the dimension of S? 6. Let ? ⊆ R! be the span of ?1 = (2,1,0,-1), ?2 =(1,2,-6,1), ?3 = (1,0,2,-1) and ? ⊆ R! be the span of ?1 =(1,1,-2,0), ?2 =(3,1,2,-2). Prove that V=W.
let p(x) and Q(x) be two polynomials and consider the following two cases: case1:p(x) x Q(x)...
let p(x) and Q(x) be two polynomials and consider the following two cases: case1:p(x) x Q(x) case2: 3 Q (x) for each case, find the following: a) the number of terms b) the degree
Let ℙn be the set of real polynomials of degree at most n, and write p′...
Let ℙn be the set of real polynomials of degree at most n, and write p′ for the derivative of p. Show that S={p∈ℙ9:p(2)=−1p′(2)} is a subspace of ℙ9.
If p(x) and q(x) are arbitrary polynomials of degree at most 2, then the mapping =p(−1)q(−1)+p(0)q(0)+p(2)q(2)...
If p(x) and q(x) are arbitrary polynomials of degree at most 2, then the mapping =p(−1)q(−1)+p(0)q(0)+p(2)q(2) defines an inner product in P3. Use this inner product to find , ||p||, ||q||, and the angle θ between p(x) and q(x) for p(x)=2x^2+3 and q(x)=2x^2−6x.
Let p be an odd prime. Let f(x) ∈ Q(x) be an irreducible polynomial of degree...
Let p be an odd prime. Let f(x) ∈ Q(x) be an irreducible polynomial of degree p whose Galois group is the dihedral group D_2p of a regular p-gon. Prove that f (x) has either all real roots or precisely one real root.
Let V = Pn(R), the vector space of all polynomials of degree at most n. And...
Let V = Pn(R), the vector space of all polynomials of degree at most n. And let T : V → V be a linear transformation. Prove that there exists a non-zero linear transformation S : V → V such that T ◦ S = 0 (that is, T(S(v)) = 0 for all v ∈ V) if and only if there exists a non-zero vector v ∈ V such that T(v) = 0. Hint: For the backwards direction, consider building...
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial...
Prove that the set V of all polynomials of degree ≤ n including the zero polynomial is vector space over the field R under usual polynomial addition and scalar multiplication. Further, find the basis for the space of polynomial p(x) of degree ≤ 3. Find a basis for the subspace with p(1) = 0.
Question 4. Consider the following subsets of the vector space P3 of polynomials of degree 3...
Question 4. Consider the following subsets of the vector space P3 of polynomials of degree 3 or less: S = {p(x) : p(1) = 0} and T = {q(x) : q(0) = 1} Determine if these subsets are vectors spaces with the standard operations for polynomials
Let Poly3(x) = polynomials in x of degree at most 2. They form a 3- dimensional...
Let Poly3(x) = polynomials in x of degree at most 2. They form a 3- dimensional space. Express the operator Q(p) = xp' + p'' . as a matrix (i) in basis {1, x, x^2 }, (ii) in basis {1, x, 1+x^2 } . Here, where p(x) represents a polynomial, p’ is its derivative, and p’’ its second derivative.
Let P be the vector space of all polynomials in x with real coefficients. Does P...
Let P be the vector space of all polynomials in x with real coefficients. Does P have a basis? Prove your answer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT