Question

Is [abs(x-y)]^2=d(x,y) a metric on the real numbers?

Is [abs(x-y)]^2=d(x,y) a metric on the real numbers?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let x and y be real numbers. Then prove that sqrt(x^2) = abs(x) and abs(xy) =...
Let x and y be real numbers. Then prove that sqrt(x^2) = abs(x) and abs(xy) = abs(x) * abs(y)
Let d be the usual metric on R2. (a) Find d(x,y) when x = (3,−2) and...
Let d be the usual metric on R2. (a) Find d(x,y) when x = (3,−2) and y = (−3,1). (b) Let x = (5,−1) and y = (−3,−5). Find a point z in R2 such that d(x,y) = d(y,z) = d(x,z). (c) Sketch Br(a) when a = (0,0) and r = 1. The Euclidean metric is by no means the only metric on Rn which is useful. Two more examples follow (9.2.10 and 9.2.12).
For all x and y, if x and y are real numbers, then exactly one of...
For all x and y, if x and y are real numbers, then exactly one of the following three statements is true: 1. x < y 2. x = y 3. x > y
1) Prove that for all real numbers x and y, if x < y, then x...
1) Prove that for all real numbers x and y, if x < y, then x < (x+y)/2 < y 2) Let a, b ∈ R. Prove that: a) (Triangle inequality) |a + b| ≤ |a| + |b| (HINT: Use Exercise 2.1.12b and Proposition 2.1.12, or a proof by cases.)
Describe all pairs (x , y) of real numbers x and y that satisfy the following...
Describe all pairs (x , y) of real numbers x and y that satisfy the following equation: x^2 + 2x + 1 = y^2 − 6y + 9
Let S be the set of all real circles, defined by (x-a)^2 + (y-b)^2=r^2. Define d(C1,C2)...
Let S be the set of all real circles, defined by (x-a)^2 + (y-b)^2=r^2. Define d(C1,C2) = √((a1 − a2)^2 + (b1 − b2)^2 + (r1 − r2)^2 so that S is a metric space. Prove that metric space S is NOT a complete metric space. Give a clear example. Describe points of C\S as limits of the appropriate sequences of circles, where C is the completion of S.
Prove that |cos x - cosy| < |x-y| for any x, y in the real numbers.
Prove that |cos x - cosy| < |x-y| for any x, y in the real numbers.
Prove the following: If x and y are real numbers and x+y>20, then x>10 or y>10
Prove the following: If x and y are real numbers and x+y>20, then x>10 or y>10
Prove the following: For any positive real numbers x and y, x+y ≥ √(xy)
Prove the following: For any positive real numbers x and y, x+y ≥ √(xy)
Let x = {x} and y ={y} represent bounded sequences of real numbers, z = x...
Let x = {x} and y ={y} represent bounded sequences of real numbers, z = x + y, prove the following: supX + supY = supZ where sup represents the supremum of each sequence.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT