Question

A tank initially contains 100 gal of a salt-water solution containing 0.05 lb of salt for...

A tank initially contains 100 gal of a salt-water solution containing 0.05 lb of salt for each gallon of water. At time zero, pure water is poured into the tank at a rate of 2 gal per minute. Simultaneously, a drain is opened at the bottom of the tank that allows the salt-water solution to leave the tank at a rate of 3 gal per minute. What will be the salt content in the tank when precisely 50 gal of salt solution remain.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tank originally contains 100 gal of fresh water. Then water containing 1/2 lb of salt...
A tank originally contains 100 gal of fresh water. Then water containing 1/2 lb of salt per gallon is poured into the tank at a rate of 2 gal/min, and the mixture is allowed to leave at the same rate. After 10 min the process is stopped, and fresh water is poured into the tank at a rate of 5 gal/min, with the mixture again leaving at the same rate. Find the amount of salt in the tank at the...
A tank initially contains 50 gal of pure water. Brine containing 4 lb of salt per...
A tank initially contains 50 gal of pure water. Brine containing 4 lb of salt per gallon enters the tank at 2 ​gal/min, and the​ (perfectly mixed) solution leaves the tank at 3 ​gal/min. Thus, the tank is empty after exactly 50 min. ​(a) Find the amount of salt in the tank after t minutes. ​(b) What is the maximum amount of salt ever in the​ tank?
A 500​-gal tank initially contains 100 gal of brine containing 75 lb of salt. Brine containing...
A 500​-gal tank initially contains 100 gal of brine containing 75 lb of salt. Brine containing 2 lb of salt per gallon enters the tank at a rate of 5 ​gal/s, and the​ well-mixed brine in the tank flows out at the rate of 3 ​gal/s. How much salt will the tank contain when it is full of​ brine?
A tank originally contains 100 gal of fresh water. Then water containing 1 2 lb of...
A tank originally contains 100 gal of fresh water. Then water containing 1 2 lb of salt per gallon is poured into the tank at a rate of 2 gal/min, and the mixture is allowed to leave at the same rate. After 10 min the process is stopped, and fresh water is poured into the tank at a rate of 3 gal/min,with the mixture again leaving at the same rate. Find the amount of salt in the tank at the...
A 100-gallon tank initially contains pure water. A solution of dye containing 0.3 lb/gal flows into...
A 100-gallon tank initially contains pure water. A solution of dye containing 0.3 lb/gal flows into the tank at the rate of 5 gal/min and the resulting mixture flows out at the same rate. After 15 min, the process is stopped and fresh water flows into the tank at the same rate. Find the concentration of dye in the tank at the end of 30 min. Ans.: 0.075 lb/gal
A tank initially contains 150 gal of brine in which 60 lb of salt are dissolved....
A tank initially contains 150 gal of brine in which 60 lb of salt are dissolved. A brine containing 4 ​lb/gal of salt runs into the tank at the rate of 6 ​gal/min. The mixture is kept uniform by stirring and flows out of the tank at the rate of 5 ​gal/min. Let y represent the amount of salt at time t. Complete parts a through f. a. At what rate​ (pounds per​ minute) does salt enter the tank at...
A tank contains 100 gallons of pure water. A salt solution with concentration 2.5 lb/gal enters...
A tank contains 100 gallons of pure water. A salt solution with concentration 2.5 lb/gal enters the tank at a rate of 4 gal/min. Solution drains from the tank at a rate of 4 gal/min. Find the eventual concentration of the salt solution using a qualitative analysis rather than by actually solving the DE.
A large tank contains 800 gal of water in which 42 lb of salt are dissolved....
A large tank contains 800 gal of water in which 42 lb of salt are dissolved. Brine containing 2 lb of of dissolved salt per gal is pumped into the tank at a rate of 4 gal per minute, and the mixture, kept uniform by stirring, is pumped out at the same rate. (a) Find the amount x(t) of salt in the tank, at time t. (b) How long will it take for the amount of salt in the tank...
A 300-gal capacity tank contains a solution of 200 gal of water and 50 lb of...
A 300-gal capacity tank contains a solution of 200 gal of water and 50 lb of salt. A solution containing 3 lb of salt per gal is allowed to flow into the tank at the rate of 4 gal/min. The mixture flows from the tank at the rate of 2 gal/min. How many pounds of salt are in the tank at the end of 30 min? When does the tank start to overflow? How much salt is in the tank...
A 100 gallon tank is filled with brine solution containing 50 pounds of salt. Pure water...
A 100 gallon tank is filled with brine solution containing 50 pounds of salt. Pure water enters the tank a rate of 10 gal per hour. Well mixed solution leaves the first tank at the same rate (10 gal/hr) and enters a second 100 gallon tank initially containing 10 pounds of salt. How much salt is in tank 2 at any time?