Question

given a line AB and a point C not on AB, prove that there is a...

given a line AB and a point C not on AB, prove that there is a Ray AD such that AC is between AB and AD

Homework Answers

Answer #1

Here is the required proof.This proof is a simple and nice proof with proper justification using the laws of geometry.I hope the answer will help you.Please give a thumbs up if you get benefited by my effort.Your feedback is very much precious to me.Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
prove that if C is an element of ray AB and C is not equal to...
prove that if C is an element of ray AB and C is not equal to A, then ray AB = ray AC using any of the following corollarys 3.2.18.) Let, A, B, and C be three points such that B lies on ray AC. Then A * B * C if and only if AB < AC. 3.2.19.) If A, B, and C are three distinct collinear points, then exactly one of them lies between the other two. 3.2.20.)...
Prove that if A*B*C, then ray AB = ray AC and ray BC is a subset...
Prove that if A*B*C, then ray AB = ray AC and ray BC is a subset of ray AC
Given △ABC, extend sides AB and AC to rays AB and AC forming exterior angles. Let...
Given △ABC, extend sides AB and AC to rays AB and AC forming exterior angles. Let the line rA be the angle bisector ∠BAC, let line rB be the angle bisector of the exterior angle at B, and let line rC be the angle bisector of the exterior angle at C. • Prove that these three rays are concurrent; that is, that they intersect at a single point. Call this point EA • Prove that EA is the center of...
Let O ∈ (AB) and C /∈ AB. Prove that there is a point D on...
Let O ∈ (AB) and C /∈ AB. Prove that there is a point D on the same side of AB as C such that m(∠DOA) = m(∠COB).
Prove that given △ABC and △A′B′C′, if we have AB ≡ A′B′ and BC≡B′C′,then B<B′ if...
Prove that given △ABC and △A′B′C′, if we have AB ≡ A′B′ and BC≡B′C′,then B<B′ if and only if AC<A′C′. You cannot use measures.
We say that a point C (anywhere) on an axis that contains a vector AB ≠...
We say that a point C (anywhere) on an axis that contains a vector AB ≠ 0 ( and so A ≠ B), divides the vector AB ≠ 0 in ratio λ, if (AC/CB) = λ . This ratio is also called the simple ratio of the points A, B, C in the order denoted by {A, B; C}. So, when A ≠ B prove: (a) C is between A and B iff λ > 0. (b) C is outside...
Suppose △ABC and △A'B'C' are triangles such that line AB || to line A'B', line BC...
Suppose △ABC and △A'B'C' are triangles such that line AB || to line A'B', line BC || to line B'C', and line AC || to line A'C'. Prove that △ABC ~ △A'B'C'.
Consider the triangle ABC. Suppose that the perpendicular bisectors of line segments AB and BC intersect...
Consider the triangle ABC. Suppose that the perpendicular bisectors of line segments AB and BC intersect at point X. Prove that X is on the perpendicular bisector of line segment AC.
Prove True Fact 2: True Fact 1: If A-B-C and line L passes through B but...
Prove True Fact 2: True Fact 1: If A-B-C and line L passes through B but not A, then A and C lie on opposite sides of L. TF1 is used to prove the following (in fact, the proof is not much different): True Fact 2: If point A lies on L and point B lies on one of the half-planes determined by L, then, except for A, the segment AB or ray AB lies completely in that half-plane.
ABC is a right-angled triangle with right angle at A, and AB > AC. Let D...
ABC is a right-angled triangle with right angle at A, and AB > AC. Let D be the midpoint of the side BC, and let L be the bisector of the right angle at A. Draw a perpendicular line to BC at D, which meets the line L at point E. Prove that (a) AD=DE; and (b) ∠DAE=1/2(∠C−∠B) Hint: Draw a line from A perpendicular to BC, which meets BC in the point F
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT