Question

Definition: Let p be a prime and 0 < n then the p-exponent of n, denoted...

Definition: Let p be a prime and 0 < n then the p-exponent of n, denoted ε(n, p) is the largest number k such that pk | n.

Note: for p does not divide n we have ε(n,p) = 0

Notation: Let n ∈ N+ we denote the set {p : p is prime and p | n} by Pr(n). Observe that Pr(n) ⊆ {2, 3, . . . n} so that Pr(n) is finite.

Problem: Let a, b be positive integers. Show that a | b if and only if Pr(a) ⊆ Pr(b) and for all p ∈ Pr(a), ε(a,p) ≤ ε(b,p).

Homework Answers

Answer #1

i will solved by using definition and in case 2 nd i was taken p1 equal to q1 which only for understanding perpose

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime:...
Let f ∈ Z[x] be a nonconstant polynomial. Prove that the set S = {p prime: there exist infinitely many positive integers n such that p | f(n)} is infinite.
Suppose N is a normal subgroup of G such that |G/N|= p is a prime. Let...
Suppose N is a normal subgroup of G such that |G/N|= p is a prime. Let K be any subgroup of G. Show that either (a) K is a subgroup of N or (b) both G=KN and |K/(K intersect N)| = p.
Definition. Let S ⊂ V be a subset of a vector space. The span of S,...
Definition. Let S ⊂ V be a subset of a vector space. The span of S, span(S), is the set of all finite linear combinations of vectors in S. In set notation, span(S) = {v ∈ V : there exist v1, . . . , vk ∈ S and a1, . . . , ak ∈ F such that v = a1v1 + . . . + akvk} . Note that this generalizes the notion of the span of a...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n). (b) Prove or disprove: Suppose p is a positive prime. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).
Let p be prime. Show that the equation x^2 is congruent to 1(mod p) has just...
Let p be prime. Show that the equation x^2 is congruent to 1(mod p) has just two solutions in Zp (the set of integers). We cannot use groups.
Suppose n = rs where r and s are distinct primes, and let p be a...
Suppose n = rs where r and s are distinct primes, and let p be a prime. Determine (with proof, of course) the number of irreducible degree n monic polynomials in Fp[x]. (Hint: look at the proof for the number of prime degree polynomials) The notation Fp means the finite field with q elements
Let N be a positive integer random variable with PMF of the form pN(n)=12⋅n⋅2−n,n=1,2,…. Once we...
Let N be a positive integer random variable with PMF of the form pN(n)=12⋅n⋅2−n,n=1,2,…. Once we see the numerical value of N , we then draw a random variable K whose (conditional) PMF is uniform on the set {1,2,…,2n} . 1. Find joint PMF pN,K(n,k) For n=1,2,… and k=1,2,…,2n 2. Find the marginal PMF pK(k) as a function of k . For simplicity, provide the answer only for the case when k is an even number. For k=2,4,6,… 3. Let...
Let phi(n) = integers from 1 to (n-1) that are relatively prime to n 1. Find...
Let phi(n) = integers from 1 to (n-1) that are relatively prime to n 1. Find phi(2^n) 2. Find phi(p^n) 3. Find phi(p•q) where p, q are distinct primes 4. Find phi(a•b) where a, b are relatively prime
: (a) Let p be a prime, and let G be a finite Abelian group. Show...
: (a) Let p be a prime, and let G be a finite Abelian group. Show that Gp = {x ∈ G | |x| is a power of p} is a subgroup of G. (For the identity, remember that 1 = p 0 is a power of p.) (b) Let p1, . . . , pn be pair-wise distinct primes, and let G be an Abelian group. Show that Gp1 , . . . , Gpn form direct sum in...
Euler's Totient Function Let f(n) denote Euler's totient function; thus, for a positive integer n, f(n)...
Euler's Totient Function Let f(n) denote Euler's totient function; thus, for a positive integer n, f(n) is the number of integers less than n which are coprime to n. For a prime p its is known that f(p^k) = p^k-p^{k-1}. For example f(27) = f(3^3) = 3^3 - 3^2 = (3^2) 2=18. In addition, it is known that f(n) is multiplicative in the sense that f(ab) = f(a)f(b) whenever a and b are coprime. Lastly, one has the celebrated generalization...