Question

(a) Prove that if two linear transformations T,U : V --> W have the same values...

(a) Prove that if two linear transformations T,U : V --> W have the same values on a basis for V, i.e., T(x) = U(x) for all x belong to beta , then T = U. Conclude that every linear transformation is uniquely determined by the images of basis vectors.

(b) (7 points) Determine the linear transformation T : P1(R) --> P2(R) given by T (1 + x) = 1+x^2, T(1- x) = x by finding the image T(a+bx) of a+bx for a+bx belong to P1(R). Here, {1+x,1 x} is a basis for P1(R).

(c) (3 points) Is the linear map T from part b. injective? Explain your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let T:V→W be a linear transformation and U be a subspace of V. Let T(U)T(U) denote...
Let T:V→W be a linear transformation and U be a subspace of V. Let T(U)T(U) denote the image of U under T (i.e., T(U)={T(u⃗ ):u⃗ ∈U}). Prove that T(U) is a subspace of W
Suppose that V is a vector space with basis {u, v, w}. Suppose that T is...
Suppose that V is a vector space with basis {u, v, w}. Suppose that T is a linear transformation from V to W and suppose also that {T(u), T(v), T(w)} is a basis for W. Prove from the definitions that T is both 1-1 and onto.
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b...
Let the linear transformation T: V--->W be such that T (u) = u2 If a, b are Real. Find T (au + bv) , if u = (x, y) v = (z, w) and uv = (xz-yw, xw + yz) Let the linear transformation T: V---> W be such that T (u) = T (x, y) = (xy, 0) where u = (x, y), with 2, -3. Then, if u = ( 1.0) and v = (0.1). Find the value...
Let T: U--> V be a linear transformation. Prove that the range of T is a...
Let T: U--> V be a linear transformation. Prove that the range of T is a subspace of W
Let T ∈ L(U,V) and S ∈ L(V,W). Prove that the product ST is a linear...
Let T ∈ L(U,V) and S ∈ L(V,W). Prove that the product ST is a linear map and hence ST ∈ L(U,W). Please be specific about each step, thank you!
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W...
10 Linear Transformations. Let V = R2 and W = R3. Define T: V → W by T(x1, x2) = (x1 − x2, x1, x2). Find the matrix representation of T using the standard bases in both V and W 11 Let T :R3 →R3 be a linear transformation such that T(1, 0, 0) = (2, 4, −1), T(0, 1, 0) = (1, 3, −2), T(0, 0, 1) = (0, −2, 2). Compute T(−2, 4, −1).
Let T be a linear transformation that is one-to-one, and u, v be two vectors that...
Let T be a linear transformation that is one-to-one, and u, v be two vectors that are linearly independent. Is it true that the image vectors T(u), T(v) are linearly independent? Explain why or why not.
Let T be a 1-1 linear transformation from a vector space V to a vector space...
Let T be a 1-1 linear transformation from a vector space V to a vector space W. If the vectors u, v and w are linearly independent in V, prove that T(u), T(v), T(w) are linearly independent in W
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that...
1. Let T be a linear transformation from vector spaces V to W. a. Suppose that U is a subspace of V, and let T(U) be the set of all vectors w in W such that T(v) = w for some v in V. Show that T(U) is a subspace of W. b. Suppose that dimension of U is n. Show that the dimension of T(U) is less than or equal to n.
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose...
Let V be a three-dimensional vector space with ordered basis B = {u, v, w}. Suppose that T is a linear transformation from V to itself and T(u) = u + v, T(v) = u, T(w) = v. 1. Find the matrix of T relative to the ordered basis B. 2. A typical element of V looks like au + bv + cw, where a, b and c are scalars. Find T(au + bv + cw). Now that you know...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT