Question

If A and B are two finite sets. Prove that |A ∪ B| = |A| +...

If A and B are two finite sets. Prove that |A ∪ B| = |A| + |B| − |A ∩ B| is true.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Prove or disprove the following statement: If A and B are finite sets, then |A...
3. Prove or disprove the following statement: If A and B are finite sets, then |A ∪ B| = |A| + |B|.
Prove the union of a finite collection of countable sets is countable.
Prove the union of a finite collection of countable sets is countable.
Assume that X and Y are finite sets. Prove the following statement: If there is a...
Assume that X and Y are finite sets. Prove the following statement: If there is a bijection f:X→Y then|X|=|Y|. Hint: Show that if f : X → Y is a surjection then |X| ≥ |Y| and if f : X → Y is an injection then |X| ≤ |Y |.
Prove that the union of two compact sets is compact using the fact that every open...
Prove that the union of two compact sets is compact using the fact that every open cover has a finite subcover.
Prove the following for the plane. a.) The intersection of two closed sets is closed. b.)...
Prove the following for the plane. a.) The intersection of two closed sets is closed. b.) The intersection of two open sets is open.
.Unless otherwise noted, all sets in this module are finite. Prove the following statements! 1. There...
.Unless otherwise noted, all sets in this module are finite. Prove the following statements! 1. There is a bijection from the positive odd numbers to the integers divisible by 3. 2. There is an injection f : Q→N. 3. If f : N→R is a function, then it is not surjective.
Prove for each: a. Proposition: If A is finite and B is countable, then A ∪...
Prove for each: a. Proposition: If A is finite and B is countable, then A ∪ B is countable. b. Proposition: Every subset A ⊆ N is finite or countable. [Similarly if A ⊆ B with B countable.] c. Proposition: If N → A is a surjection, then A is finite or countable. [Or if countable B → A surjection.]
Prove that for all sets A, B, C, A ∩ (B ∩ C) = (A ∩...
Prove that for all sets A, B, C, A ∩ (B ∩ C) = (A ∩ B) ∩ C Prove that for all sets A, B, A \ (A \ B) = A ∩ B.
Using the following theorem: If A and B are disjoint denumerable sets, then A ∪ B...
Using the following theorem: If A and B are disjoint denumerable sets, then A ∪ B is denumerable, prove the union of a finite pairwise disjoint family of denumerable sets {Ai :1,2,3,....,n} is denumerable
Let A and B be sets. Prove that A ⊆ B if and only if A...
Let A and B be sets. Prove that A ⊆ B if and only if A − B = ∅.