Question

Let 4ABC be an isosceles triangle, where the congruent sides are AB and AC. Let M...

Let 4ABC be an isosceles triangle, where the congruent sides are
AB and AC. Let M and N denote points on AB and AC respectively
such that AM ∼= AN. Let H denote the intersection point of MC with
NB. Prove that the triangle 4MNH is isosceles

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If ?ABC is an isosceles triangle where AB¯?AC¯, m?A=(2x?20)°, and m?B=(3x+5)°, then m?C=__________°.
If ?ABC is an isosceles triangle where AB¯?AC¯, m?A=(2x?20)°, and m?B=(3x+5)°, then m?C=__________°.
Given △ABC, extend sides AB and AC to rays AB and AC forming exterior angles. Let...
Given △ABC, extend sides AB and AC to rays AB and AC forming exterior angles. Let the line rA be the angle bisector ∠BAC, let line rB be the angle bisector of the exterior angle at B, and let line rC be the angle bisector of the exterior angle at C. • Prove that these three rays are concurrent; that is, that they intersect at a single point. Call this point EA • Prove that EA is the center of...
Isosceles triangle base length is 15 inches, it also has 2 congruent sides with 15 inches...
Isosceles triangle base length is 15 inches, it also has 2 congruent sides with 15 inches each. Find the height of the triangle.
Let ABCD be a rectangle with AB = 4 and BC = 1. Denote by M...
Let ABCD be a rectangle with AB = 4 and BC = 1. Denote by M the midpoint of line segment AD and by P the leg of the perpendicular from B onto CM. a) Find the lengths of P B and PM. b) Find the area of ABPM. c) Consider now ABCD being a parallelogram. Denote by M the midpoint of side AD and by P the leg of the perpendicular from B onto CM. Prove that AP =...
In an isosceles triangle ABC ,AB‌=BC,angle B=20 . M and N are on AB and BC...
In an isosceles triangle ABC ,AB‌=BC,angle B=20 . M and N are on AB and BC respectively such that angle MCA =60, angle NAC =50.find angle MNC
In triangle ABC , let the bisectors of angle b meet AC at D and let...
In triangle ABC , let the bisectors of angle b meet AC at D and let the bisect of angle C meet at AB at E. Show that if BD is congruent to CE then angle B is congruent to angle C.
ABC is a right-angled triangle with right angle at A, and AB > AC. Let D...
ABC is a right-angled triangle with right angle at A, and AB > AC. Let D be the midpoint of the side BC, and let L be the bisector of the right angle at A. Draw a perpendicular line to BC at D, which meets the line L at point E. Prove that (a) AD=DE; and (b) ∠DAE=1/2(∠C−∠B) Hint: Draw a line from A perpendicular to BC, which meets BC in the point F
5. Suppose that the incenter I of ABC is on the triangle’s Euler line. Show that...
5. Suppose that the incenter I of ABC is on the triangle’s Euler line. Show that the triangle is isosceles. 6. Suppose that three circles of equal radius pass through a common point P, and denote by A, B, and C the three other points where some two of these circles cross. Show that the unique circle passing through A, B, and C has the same radius as the original three circles. 7. Suppose A, B, and C are distinct...
Three point charges are on the corners of an isosceles triangle (a triangle where two sides...
Three point charges are on the corners of an isosceles triangle (a triangle where two sides have equal length). The distance between ?1and ?2is ?and the distance between ?3and both ?1and ?2is 5?. The three charges have the relative values (?> 0):Q1=-3Q , Q2=2Q , Q3= 5Q a)Draw diagrams showing the individual electric forces from the other charges and the total electric force on each charge. b) Solve for the x and y components of the total electric field at...
Let A = (2, 9), B = (6, 2), and C = (10, 10). Verify that...
Let A = (2, 9), B = (6, 2), and C = (10, 10). Verify that segments AB and AC have the same length. Measure angles ABC and ACB. On the basis of your work, propose a general statement that applies to any triangle that has two sides of equal length. Prove your assertion, which might be called the Isosceles-Triangle Theorem.