Two functions, u(x,y) and v(x,y), are said to verify the
Cauchy-Riemann
differentiation equations if they satisfy...
Two functions, u(x,y) and v(x,y), are said to verify the
Cauchy-Riemann
differentiation equations if they satisfy the following
equations ∂u\dx=∂v/dy and ∂u/dy=−(∂v/dx)
a. Verify that the Cauchy-Riemann differentiation equations can
be written in the polar coordinate form as
∂u/dr=1/dr ∂v/dθ and ∂v/dr =−1/r ∂u/∂θ
b. Show that the following functions satisfy the Cauchy-Riemann
differen- tiation equations
u=ln sqrt(x^(2)+y^(2)) and v= arctan y/x.
Verify the Caucy-riemann equations for the functions u(x,y),
v(x,y) defined in the given domain
u(x,y)=x³-3xy², v(x,y)=3x²y-y³,...
Verify the Caucy-riemann equations for the functions u(x,y),
v(x,y) defined in the given domain
u(x,y)=x³-3xy², v(x,y)=3x²y-y³, (x,y)ɛR
u(x,y)=sinxcosy,v(x,y)=cosxsiny (x,y)ɛR
u(x,y)=x/(x²+y²), v(x,y)=-y/(x²+y²),(x²+y²), (
x²+y²)≠0
u(x,y)=1/2 log(x²+y²), v(x,y)=sin¯¹(y/√¯x²+y²), ( x˃0 )
In each case,state a complex functions whose real and imaginary
parts are u(x,y) and v(x,y)
f(x, y) = 4 + x^3 + y^3 − 3xy
(a,b)=(0.5,0.5)
u = ( √ 1...
f(x, y) = 4 + x^3 + y^3 − 3xy
(a,b)=(0.5,0.5)
u = ( √ 1 /2 , − √ 1 /2 )
a) Calculate the rate of change of f along the curve r(t) = (t,
t2 ), at t = −1
b)Classify the critical points of f using the second derivative
test.