Question

Find n for which the nth iteration by the fixed point method is guaranteed to approximate...

Find n for which the nth iteration by the fixed point method is guaranteed to approximate the root of f(x) = x − cos x on [0, π/3] with an accuracy within 10−8 using x0 = π/4

Answer: n = 127 iterations or n = 125 iterations.

Please show work to get to answer

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Newton's method: For a function ?(?)=ln?+?2−3f(x)=ln⁡x+x2−3 a. Find the root of function ?(?)f(x) starting with ?0=1.0x0=1.0....
Newton's method: For a function ?(?)=ln?+?2−3f(x)=ln⁡x+x2−3 a. Find the root of function ?(?)f(x) starting with ?0=1.0x0=1.0. b. Compute the ratio |??−?|/|??−1−?|2|xn−r|/|xn−1−r|2, for iterations 2, 3, 4 given ?=1.592142937058094r=1.592142937058094. Show that this ratio's value approaches |?″(?)/2?′(?)||f″(x)/2f′(x)| (i.e., the iteration converges quadratically). In error computation, keep as many digits as you can.
Use Newton's method to approximate the root of the equation to four decimal places. Start with...
Use Newton's method to approximate the root of the equation to four decimal places. Start with x 0 =-1 , and show all work f(x) = x ^ 5 + 10x + 3 Sketch a picture to illustrate one situation where Newton's method would fail . Assume the function is non-constant differentiable , and defined for all real numbers
Use Newton's method to find the number   arcsin(1/3) rounded to 14 digits after the decimal point by...
Use Newton's method to find the number   arcsin(1/3) rounded to 14 digits after the decimal point by solving numerically the equation sin(x)=1/3 on the interval [0,pi/6]. 1) Determine f(a) and f(b). 2) Find analytically f', f'' and check if f '' is continuous on the chosen interval [a,b]. 3) Determine the sign of f' and f '' on [a,b] using their plots. 4) Determine using the plot the upper bound C and the lower bound c for |f'(x)|. 5) Calculate the...
Using Matlab, find an approximation by the method of false position for the root of function...
Using Matlab, find an approximation by the method of false position for the root of function f(x) = ex −x2 + 3x−2 accurate to within 10−5 (absolute error) on the interval [0,1]. Please answer and show code. Pseudo Code for Method of False Position: Given [a,b] containing a zero of f(x); tolerance = 1.e-7; nmax = 1000; itcount = 0; error = 1; while (itcount <=nmax && error >=tolerance) itcount = itcount + 1; x= a - ((b-a)/(f(b)-f(a)))f(a) error =abs(f(x));...
4. When the second derivative test (SDT) is used for a critical point the result can...
4. When the second derivative test (SDT) is used for a critical point the result can be local maximum, local minimum, saddle point or test inconclusive. Consider the function f(x, y) = y^2 − 2y cos(x) with domain restricted to {(x, y) | −1 ≤ x ≤ 4 and − 2 ≤ y ≤ 4} and the three points P = ( π/2 , 0) Q = (0, 1) and R = (π, −1). (a) Find all the critical points...
Your task will be to derive the equations describing the velocity and acceleration in a polar...
Your task will be to derive the equations describing the velocity and acceleration in a polar coordinate system and a rotating polar vector basis for an object in general 2D motion starting from a general position vector. Then use these expressions to simplify to the case of non-uniform circular motion, and finally uniform circular motion. Here's the time-dependent position vector in a Cartesian coordinate system with a Cartesian vector basis: ⃗r(t)=x (t) ̂ i+y(t) ̂ j where x(t) and y(t)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT