Question

Let pp be a polynomial, and let θ∈(−1,1)θ∈(−1,1). Show that the series ∑∞k=1p(k)θk∑k=1∞p(k)θk converges absolutely.

Let pp be a polynomial, and let θ∈(−1,1)θ∈(−1,1). Show that the series ∑∞k=1p(k)θk∑k=1∞p(k)θk converges absolutely.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine if the series converges conditionally, converges absolutely, or diverges. /sum(n=1 to infinity) ((-1)^n(2n^2))/(n^2+4) /sum(n=1 to...
Determine if the series converges conditionally, converges absolutely, or diverges. /sum(n=1 to infinity) ((-1)^n(2n^2))/(n^2+4) /sum(n=1 to infinity) sin(4n)/4^n
let x be a discrete random variable with positive integer outputs. show that P(x=k) = P(...
let x be a discrete random variable with positive integer outputs. show that P(x=k) = P( x> k-1)- P( X>k) for any positive integer k. assume that for all k>=1 we have P(x>k)=q^k. use (a) to show that x is a geometric random variable.
suppose sigma n=1 to infinity of square root ((a_n)^2 + (b_n)^2)) converges. Show that both sigma...
suppose sigma n=1 to infinity of square root ((a_n)^2 + (b_n)^2)) converges. Show that both sigma a_n and sigma b_n converge absolutely.
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn|...
Let 0 < θ < 1 and let (xn) be a sequence where |xn+1 − xn| ≤ θn  for n = 1, 2, . . .. a) Show that for any 1 ≤ n < m one has |xm − xn| ≤ (θn/ 1-θ )*(1 − θ m−n ). Conclude that (xn) is Cauchy b)If lim xn = x* , prove the following error in approximation (the "error in approximation" is the same as error estimation in Taylor Theorem) in t:...
Let X ∼ Geo(?) with Θ = [0,1]. a) Show that pdf of the random variable...
Let X ∼ Geo(?) with Θ = [0,1]. a) Show that pdf of the random variable X is in the one-parameter regular exponential family of distributions. b) If X1, ... , Xn is a sample of iid Geo(?) random variables with Θ = (0, 1), determine a complete minimal sufficient statistic for ?.
For the next two series, (1) find the interval of convergence and (2) study convergence at...
For the next two series, (1) find the interval of convergence and (2) study convergence at the end points of the interval if any. Also, (3) indicate for what values of x the series converges absolutely, conditionally, or not at all. You must indicate the test you use and show the interval of convergence both analytically and graphically and summarize your results on the picture. ∑∞ n=1 ((−1)^n−1)/ (n^1/4)) *x^n
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower Bound of θ(1-θ) =((1-2θ)^2 θ(1-θ))/n Find the UMVUE of θ(1-θ) if such exists. can you proof [part (b) ] using (Leehmann Scheffe Theorem step by step solution) to proof [∑X1-nXbar^2 ]/(n-1) is the umvue , I have the key solution below x is complete and sufficient. S^2=∑ [X1-Xbar ]^2/(n-1) is unbiased estimator of θ(1-θ) since the sample variance is an unbiased estimator of the...
Let X Geom(p). For positive integers n, k define P(X = n + k | X...
Let X Geom(p). For positive integers n, k define P(X = n + k | X > n) = P(X = n + k) / P(X > n) : Show that P(X = n + k | X > n) = P(X = k) and then briefly argue, in words, why this is true for geometric random variables.
10. Let P(k) be the following statement: ”Let a1, a2, . . . , ak be...
10. Let P(k) be the following statement: ”Let a1, a2, . . . , ak be integers and p be a prime. If p|(a1 · a2 · a3 · · · ak), then p|ai for some i with 1 ≤ i ≤ k.” Prove that P(k) holds for all positive integers k
Let P0<tn-1<k=0.42 , and k>0 and n≥2 and n is an integer. Find the following: P-k<tn-1<k...
Let P0<tn-1<k=0.42 , and k>0 and n≥2 and n is an integer. Find the following: P-k<tn-1<k P-k<tn-1<0 Ptn-1<k
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT