Question

True or false and explain why? A system of 2 equations in 3 unknown has infinitely...

True or false and explain why?
A system of 2 equations in 3 unknown has infinitely many solutions.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Is each statement true or false? If true, explain why; if false, give a counterexample. a)...
Is each statement true or false? If true, explain why; if false, give a counterexample. a) A linear system with 5 equations and 4 unknowns is always inconsistent. b) If the coefficient matrix of a homogeneous system has a column of zeroes, then the system has infinitely many solutions. (Note: a homogeneous system has augmented matrix [A | b] where b = 0.) c) If the RREF of a homogeneous system has a row of zeroes, then the system has...
Geometrically, why does a homogenous system of two linear equations in three variables have infinitely many...
Geometrically, why does a homogenous system of two linear equations in three variables have infinitely many solutions? If the system were nonhomogeneous, how many solutions might there be? Explain this geometrically.
Find the value (s) of for which the system of equations below has infinitely many solutions....
Find the value (s) of for which the system of equations below has infinitely many solutions. ( a-3)x+y=0 x+( a-3 ) y=0
A: Determine whether the system of linear equations has one and only one solution, infinitely many...
A: Determine whether the system of linear equations has one and only one solution, infinitely many solutions, or no solution. 3x - 4y = 9 9x - 12y = 18 B: Find the solution, if one exists. (If there are infinitely many solutions, express x and y in terms of parameter t. If there is no solution, enter no solution.) (x,y)= ?
Determine the value of k such that the following system of linear equations has infinitely many...
Determine the value of k such that the following system of linear equations has infinitely many solutions, and then find the solutions. (Express x, y, and z in terms of the parameters t and s.) 3x − 2y + 4z = 9 −9x + 6y − 12z = k k = (x, y, z) =
For a real number "a", consider the system of equations: x+y+z=2 2x+3y+3z=4 2x+3y+(a^2-1)z=a+2 Which of the...
For a real number "a", consider the system of equations: x+y+z=2 2x+3y+3z=4 2x+3y+(a^2-1)z=a+2 Which of the following statements is true? A. If a= 3 then the system is inconsistent. B. If a= 1 then the system has infinitely many solutions. C. If a=−1 then the system has at least two distinct solutions. D. If a= 2 then the system has a unique solution. E. If a=−2 then the system is inconsistent.
Find the values of a and b for which the following system of linear equations is...
Find the values of a and b for which the following system of linear equations is (i) inconsistent; (ii) has a unique solution; (iii) has infinitely many solutions. For the case where the system has infinitely many solutions, write the general solution. x + y + z = a x + 2y ? z = 0 x + by + 3z = 2
The augmented matrix represents a system of linear equations in the variables x and y. [1...
The augmented matrix represents a system of linear equations in the variables x and y. [1 0 5. ] [0 1 0 ] (a) How many solutions does the system have: one, none, or infinitely many? (b) If there is exactly one solution to the system, then give the solution. If there is no solution, explain why. If there are an infinite number of solutions, give two solutions to the system.
true/false : if a system of linear equations has a 3x5 augmented matrix whose fifth column...
true/false : if a system of linear equations has a 3x5 augmented matrix whose fifth column has a leading term, then the system is consistent. I know the answer is false, but why? This is all the information provided in the question.
Let A be a n × n matrix, and let the system of linear equations A~x...
Let A be a n × n matrix, and let the system of linear equations A~x = ~b have infinitely many solutions. Can we use Cramer’s rule to find x1? If yes, explain how to find it. If no, explain why not.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT