Question

when cylinder x^2+y^2=1, y^2+z^1=1 and x^2+z^1=1 intercept with each other, set up a triple integral to...

when cylinder x^2+y^2=1, y^2+z^1=1 and x^2+z^1=1 intercept with each other, set up a triple integral to calculate the volume of the interception. (Dont have to evaluate the integral, but just set it up.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Set up and evaluate a triple integral for the volume of a cylinder of radius a...
Set up and evaluate a triple integral for the volume of a cylinder of radius a and height h. You need to write an equation for this cylinder first
1- Set up the triple integral for the volume of the sphere Q=8 in rectangular coordinates....
1- Set up the triple integral for the volume of the sphere Q=8 in rectangular coordinates. 2- Find the volume of the indicated region. the solid cut from the first octant by the surface z= 64 - x^2 -y 3- Write an iterated triple integral in the order dz dy dx for the volume of the region in the first octant enclosed by the cylinder x^2+y^2=16 and the plane z=10
Set up (Do Not Evaluate) a triple integral that yields the volume of the solid that...
Set up (Do Not Evaluate) a triple integral that yields the volume of the solid that is below        the sphere x^2+y^2+z^2=8 and above the cone z^2=1/3(x^2+y^2) a) Rectangular coordinates        b) Cylindrical coordinates        c)   Spherical coordinates
7. Given The triple integral E (x^2 + y^2 + z^2 ) dV where E is...
7. Given The triple integral E (x^2 + y^2 + z^2 ) dV where E is bounded above by the sphere x 2 + y 2 + z 2 = 9 and below by the cone z = √ x 2 + y 2 . i) Set up using spherical coordinates. ii) Evaluate the integral
Set up the triple integral, including limits, of the function over the region. f(x, y, z)...
Set up the triple integral, including limits, of the function over the region. f(x, y, z) = sin z, x ≥ 0, y ≥ 0, and below the plane 2x + 2y + z = 2
Set up a double integral in rectangular coordinates for the volume bounded by the cylinders x^2+y^2=1...
Set up a double integral in rectangular coordinates for the volume bounded by the cylinders x^2+y^2=1 and y^2+z^x=1 and evaluate that double integral to find the volume.
Evaluate the surface integral (x+y+z)dS when S is part of the half-cylinder x^2 +z^2=1, z≥0, that...
Evaluate the surface integral (x+y+z)dS when S is part of the half-cylinder x^2 +z^2=1, z≥0, that lies between the planes y=0 and y=2
1.Set up the bounds for the following triple integral: R R R E (2y)dV where E...
1.Set up the bounds for the following triple integral: R R R E (2y)dV where E is bounded by the planes x = 0, y = 0, z = 0, and 3 = 4x + y + z. Do NOT integrate. 2.Set up the triple integral above as one of the other two types of solids E.
Evaluate the triple integral. 2 sin (2xy2z3) dV, where B B = (x, y, z) |...
Evaluate the triple integral. 2 sin (2xy2z3) dV, where B B = (x, y, z) | 0 ≤ x ≤ 4, 0 ≤ y ≤ 2, 0 ≤ z ≤ 1
Set up a triple integral in cylindrical coordinates to compute the volume of the solid bounded...
Set up a triple integral in cylindrical coordinates to compute the volume of the solid bounded between the cone z 2 = x 2 + y 2 and the two planes z = 1 and z = 2. Note: Please write clearly. That had been a big problem for me lately. no cursive Thanks.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT