Question

Formal Proof: Let p be a prime and let a be an integer. Assume p ∤...

Formal Proof: Let p be a prime and let a be an integer. Assume p ∤ a. Prove gcd(a, p) = 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let p be an odd prime and let a be an odd integer with p not...
Let p be an odd prime and let a be an odd integer with p not divisible by a. Suppose that p = 4a + n2 for some integer n. Prove that the Legendre symbol (a/p) equals 1.
Let b be a primitive root for the odd prime p. Prove that b^k is a...
Let b be a primitive root for the odd prime p. Prove that b^k is a primitive root for p if and only if gcd(k, p − 1) = 1.
Let p be a prime and let a be a primitive root modulo p. Show that...
Let p be a prime and let a be a primitive root modulo p. Show that if gcd (k, p-1) = 1, then b≡ak (mod p) is also a primitive root modulo p.
Suppose p is a positive prime integer and k is an integer satisfying 1 ≤ k...
Suppose p is a positive prime integer and k is an integer satisfying 1 ≤ k ≤ p − 1. Prove that p divides p!/ (k! (p-k)!).
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2...
Let p be an odd prime, and let x = [(p−1)/2]!. Prove that x^2 ≡ (−1)^(p+1)/2 (mod p). (You will need Wilson’s theorem, (p−1)! ≡−1 (mod p).) This gives another proof that if p ≡ 1 (mod 4), then x^2 ≡ −1 (mod p) has a solution.
Prove that the Petersen graph P(5, 2) is the complement of L(K5) with a formal proof.
Prove that the Petersen graph P(5, 2) is the complement of L(K5) with a formal proof.
1. Let p be any prime number. Let r be any integer such that 0 <...
1. Let p be any prime number. Let r be any integer such that 0 < r < p−1. Show that there exists a number q such that rq = 1(mod p) 2. Let p1 and p2 be two distinct prime numbers. Let r1 and r2 be such that 0 < r1 < p1 and 0 < r2 < p2. Show that there exists a number x such that x = r1(mod p1)andx = r2(mod p2). 8. Suppose we roll...
Let x be an integer bigger than 4. Prove that x is prime if and only...
Let x be an integer bigger than 4. Prove that x is prime if and only if x does not divide (x − 1)!.
Let p be be prime and p ≡ 1 (mod 4|a|). Prove that a is a...
Let p be be prime and p ≡ 1 (mod 4|a|). Prove that a is a quadratic residue mod p.
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is...
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is not a prime number, then n is divisible by an integer x with 1 < x ≤√n. [Note: An integer m is divisible by another integer n if there exists a third integer k such that m = nk. This is just a formal way of saying that m is divisible by n if m n is an integer.]
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT