Question

Given a LP model as:Minimize Z = 2X1+ 4X2+ 6X3 Subject to: X1+2X2+ X3≥2 X1–X3≥1 X2+X3=...

Given a LP model as:Minimize Z = 2X1+ 4X2+ 6X3

Subject to:

X1+2X2+ X3≥2

X1–X3≥1

X2+X3= 1

2X1+ X2≤3

X2, X3 ≥0, X1 urs

a) Find the standard form of the LP problem.

b) Find the starting tableau to solve the Primal LP problem by using the M-Technique.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following LP: Max Z=X1+5X2+3X3 s.t. X1+2X2+X3=3 2X1-X2 =4 X1,X2,X3≥0 a.) Write the associated dual...
Consider the following LP: Max Z=X1+5X2+3X3 s.t. X1+2X2+X3=3 2X1-X2 =4 X1,X2,X3≥0 a.) Write the associated dual model b.) Given the information that the optimal basic variables are X1 and X3, determine the associated optimal dual solution.
Consider the following problem.                         Maximize   Z = 2x1 - x2 + x3, subject to x1...
Consider the following problem.                         Maximize   Z = 2x1 - x2 + x3, subject to x1 - x2 + 3x3 ≤   4             2x1 + x2           ≤ 10             x1 - x2 -    x3 ≤   7 and       x1 ≥ 0,   x2 ≥ 0,    x3 ≥ 0. Use Excel Solver to solve this problem. Write out the augmented form of this problem by introducing slack variables. Work through the simplex method step by step in tabular form to solve the problem.
max Z = 5x1+3x2+x3 s.t : 2x1+x2+x3 < 6 x1+2x2+x3 < 7 x1, x2, x3 >...
max Z = 5x1+3x2+x3 s.t : 2x1+x2+x3 < 6 x1+2x2+x3 < 7 x1, x2, x3 > 0 Solve the problem. What is the optimal value of the objective function (OF)? Decision variables? Solve the problem. What is the optimal value of the objective function (OF)? Decision variables? (20 points)
Max Z   = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 ≤ 8 2x2...
Max Z   = 2x1 + 8x2 + 4x3 subject to 2x1 + 3x2 ≤ 8 2x2 + 5x3 ≤ 12 3x1 + x2 + 4x3   ≤15 and x1,x2,x3≥0; Verify that your primal and dual solutions are indeed optimal using the Complementary Slackness theorem.
Solve The LP problem using the graphic method Z Max=5X1+3X2 Constaint function: 2X1 + 4X2 ≤...
Solve The LP problem using the graphic method Z Max=5X1+3X2 Constaint function: 2X1 + 4X2 ≤ 80 5X1 + 2X2 ≤ 80 X1≥ 0 , X2≥0
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1...
Find the dual of the following LP, using direct method. minz=4X1 +2X2 -X3 subject to X1 +2X2 ≤6 X1 -X2 +2X3 =8 X1 ≥0,X2 ≥0,X3 urs
Minimize Z = X1+2X2 Subject to -X1+X2 ? 15 2X1+X2 ? 90 X2 ? 30 And...
Minimize Z = X1+2X2 Subject to -X1+X2 ? 15 2X1+X2 ? 90 X2 ? 30 And X1 ? 0, X2 ? 0 a.) Solve this graphically b.) Develop a table giving each of the CPF solutions and the corresponding defining equations, BF solutions, and non-basic variables.
Solve the following LP model using the dual simplex method. Use the format of the tabular...
Solve the following LP model using the dual simplex method. Use the format of the tabular form of the simplex without converting the problem into a maximization  problem.                                                 Minimize -2x1 – x2                                                 Subject to                                                                 x1+ x2+ x3 = 2                                                                 x1 + x4 = 1                                                                 x1, x2, x3, x4 ³ 0
Duality Theory: Consider the following LP: max 2x1+2x2+4x3 x1−2x2+2x3≤−1 3x1−2x2+4x3≤−3 x1,x2,x3≤0 Formulate a dual of this...
Duality Theory: Consider the following LP: max 2x1+2x2+4x3 x1−2x2+2x3≤−1 3x1−2x2+4x3≤−3 x1,x2,x3≤0 Formulate a dual of this linear program. Select all the correct objective function and constraints 1. min −y1−3y2 2. min −y1−3y2 3. y1+3y2≤2 4. −2y1−2y2≤2 5. 2y1+4y2≤4 6. y1,y2≤0
Solve the LPP below by making use of the dual simplex method. min z=2x1+3x2+4x3 st: x1+2x2+x3>=3...
Solve the LPP below by making use of the dual simplex method. min z=2x1+3x2+4x3 st: x1+2x2+x3>=3    2x1-x2+3x3>=4    x1,x2,x3>=0
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT