Question

Let A, B, C be sets and let f : A → B and g :...

Let A, B, C be sets and let f : A → B and g : f (A) → C be one-to-one functions. Prove that their composition g ◦ f , defined by g ◦ f (x) = g(f (x)), is also one-to-one.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f and g be functions between A and B. Prove that f = g iff...
Let f and g be functions between A and B. Prove that f = g iff the domain of f = the domain of g and for every x in the domain of f, f(x) = g(x). Thank you!
Let A,B and C be sets, show(Prove) that (A-B)-C = (A-C)-(B-C).
Let A,B and C be sets, show(Prove) that (A-B)-C = (A-C)-(B-C).
Let a < b, a, b, ∈ R, and let f : [a, b] → R...
Let a < b, a, b, ∈ R, and let f : [a, b] → R be continuous such that f is twice differentiable on (a, b), meaning f is differentiable on (a, b), and f' is also differentiable on (a, b). Suppose further that there exists c ∈ (a, b) such that f(a) > f(c) and f(c) < f(b). prove that there exists x ∈ (a, b) such that f'(x)=0. then prove there exists z ∈ (a, b) such...
Let A, B, C and D be sets. Prove that A\B ⊆ C \D if and...
Let A, B, C and D be sets. Prove that A\B ⊆ C \D if and only if A ⊆ B ∪C and A∩D ⊆ B
Let F be a field and Aff(F) := {f(x) = ax + b : a, b...
Let F be a field and Aff(F) := {f(x) = ax + b : a, b ∈ F, a ≠ 0} the affine group of F. Prove that Aff(F) is indeed a group under function composition. When is Aff(F) abelian?
Let S = {a,b,c,d,e,f,g} and let T = {1,2,3,4,5,6,7,8}. a.  How many different functions are there from...
Let S = {a,b,c,d,e,f,g} and let T = {1,2,3,4,5,6,7,8}. a.  How many different functions are there from S to T? b. How many different one-to-one functions are there from S to T? c. How many different one-to-one functions are there from T to S? d. How many different onto functions are there from T to S?
Let a, b ∈ R. Assume that vector F and vector G are C^1 vector fields...
Let a, b ∈ R. Assume that vector F and vector G are C^1 vector fields on R^3 . Prove that ∇ × (aF~ + bG~ ) = a∇ × F + b∇ × G.
Let f : A → B and suppose that there exists a function g : B...
Let f : A → B and suppose that there exists a function g : B → A such that (g ◦ f)(a) = a and (f ◦ g)(b) = b. Prove that g = f −1 . Thank you!
Let f : A → B, and let S, T ⊆ A. Suppose also that f...
Let f : A → B, and let S, T ⊆ A. Suppose also that f is one-to-one. Prove that f(S ∩ T) = f(S) ∩ f(T).
Let A and B be sets. Prove that (A∪B)\(A∩B) = (A\B)∪(B\A)
Let A and B be sets. Prove that (A∪B)\(A∩B) = (A\B)∪(B\A)