Question

Using field and order axioms prove the following theorems: (i) Let x, y, and z be...

Using field and order axioms prove the following theorems:

(i) Let x, y, and z be elements of R, the

a. If 0 < x, and y < z, then xy < xz

b. If x < 0 and y < z, then xz < xy

(ii) If x, y are elements of R and 0 < x < y, then 0 < y ^ -1 < x ^ -1

(iii) If x,y are elements of R and x < y, there exists a number x in R such that x < z < y

The order axioms given are :

-A = (x is an element of R such that -x is an element of A)

-P intersection P = null set (where -P is negative numbers and P is positive numbers)

-P union {0} union P = R

If a and b are elements of P, then a + b is an element of P and ab is an element of P

If b - a is an element of P, then b > a

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Using field and order axioms prove the following theorems: (i) 0 is neither in P nor...
Using field and order axioms prove the following theorems: (i) 0 is neither in P nor in - P (ii) -(-A) = A (where A is a set, as defined in the axioms. (iii) Suppose a and b are elements of R. Then a<=b if and only if a<b or a=b (iv) Let x and y be elements of R. Then either x <= y or y <= x (or both). The order axioms given are : -A = (x...
Using field axioms and order axioms prove the following theorems (i) The sets R (real numbers),...
Using field axioms and order axioms prove the following theorems (i) The sets R (real numbers), P (positive numbers) and [1, infinity) are all inductive (ii) N (set of natural numbers) is inductive. In particular, 1 is a natural number (iii) If n is a natural number, then n >= 1 (iv) (The induction principle). If M is a subset of N (set of natural numbers) then M = N The following definitions are given: A subset S of R...
Using the following axioms: a.) (x+y)+x = x +(y+x) for all x, y in R (associative...
Using the following axioms: a.) (x+y)+x = x +(y+x) for all x, y in R (associative law of addition) b.) x + y = y + x for all x, y elements of R (commutative law of addition) c.) There exists an additive identity 0 element of R (x+0 = x for all x elements of R) d.) Each x element of R has an additive inverse (an inverse with respect to addition) Prove the following theorems: 1.) The additive...
Real Analysis I Prove the following exercises (show all your work)- Exercise 1.1.1: Prove part (iii)...
Real Analysis I Prove the following exercises (show all your work)- Exercise 1.1.1: Prove part (iii) of Proposition 1.1.8. That is, let F be an ordered field and x, y,z ∈ F. Prove If x < 0 and y < z, then xy > xz. Let F be an ordered field and x, y,z,w ∈ F. Then: If x < 0 and y < z, then xy > xz. Exercise 1.1.5: Let S be an ordered set. Let A ⊂...
Prove: Let x,y be in R such that x < y. There exists a z in...
Prove: Let x,y be in R such that x < y. There exists a z in R such that x < z < y. Given: Axiom 8.1. For all x,y,z in R: (i) x + y = y + x (ii) (x + y) + z = x + (y + z) (iii) x*(y + z) = x*y + x*z (iv) x*y = y*x (v) (x*y)*z = x*(y*z) Axiom 8.2. There exists a real number 0 such that for all...
Use axioms to prove the theorem: if x and y are non-zero real numbers, then xy...
Use axioms to prove the theorem: if x and y are non-zero real numbers, then xy does not equal 0
let G be a group of order 18. x, y, and z are elements of G....
let G be a group of order 18. x, y, and z are elements of G. if | < x, y >| = 9 and o(z) = order of z = 9, prove that G = < x, y, z >
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}....
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}. a) Prove or disprove: A ⊆ X b) Prove or disprove: X ⊆ A 4 c) Prove or disprove: P(X ∪ Y ) ⊆ P(X) ∪ P(Y ) ∪ P(X ∩ Y ) d) Prove or disprove: P(X) ∪ P(Y ) ∪ P(X ∩ Y ) ⊆ P(X ∪ Y )
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}....
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}. a) Prove or disprove: A ⊆ X b) Prove or disprove: X ⊆ A c) Prove or disprove: P(X ∪ Y ) ⊆ P(X) ∪ P(Y ) ∪ P(X ∩ Y ) d) Prove or disprove: P(X) ∪ P(Y ) ∪ P(X ∩ Y ) ⊆ P(X ∪ Y )
A. Let p and r be real numbers, with p < r. Using the axioms of...
A. Let p and r be real numbers, with p < r. Using the axioms of the real number system, prove there exists a real number q so that p < q < r. B. Let f: R→R be a polynomial function of even degree and let A={f(x)|x ∈R} be the range of f. Define f such that it has at least two terms. 1. Using the properties and definitions of the real number system, and in particular the definition...