Question

Let P(R) denote the family of all polynomials (in a single variable x) with real coefficients....

Let P(R) denote the family of all polynomials (in a single variable x) with real coefficients. We have seen that with the operations of pointwise addition and multiplication by scalars, P(R) is a vector space over R. Consider the 2 linear maps D, I : P(R) to P(R), where D is differentiation and I is anti-differentiation. In detail, for a polynomial p = a0+a1x1+...+anxn, we have D(p) = a1+2a2x+....+nanxn-1 and I(p) = a0x+(a1/2)x2+...+(an/(n+1))xn+1.

a. Show that D composed with I = the identity of P(R).

b. Show that neither D nor I is an isomorphism.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let R[x] be the set of all polynomials (in the variable x) with real coefficients. Show...
Let R[x] be the set of all polynomials (in the variable x) with real coefficients. Show that this is a ring under ordinary addition and multiplication of polynomials. What are the units of R[x] ? I need a legible, detailed explaination
Let P4 denote the space of polynomials of degree less than 4 with real coefficients. Show...
Let P4 denote the space of polynomials of degree less than 4 with real coefficients. Show that the standard operations of addition of polynomials, and multiplication of polynomials by a scalar, give P4 the structure of a vector space (over the real numbers R). Your answer should include verification of each of the eight vector space axioms (you may assume the two closure axioms hold for this problem).
Let P2 denote the vector space of polynomials in x with real coefficients having degree at...
Let P2 denote the vector space of polynomials in x with real coefficients having degree at most 2. Let W be a subspace of P2 given by the span of {x2−x+6,−x2+2x−1,x+5}. Show that W is a proper subspace of P2.
Consider a one-dimensional real-space wave-function ψ(x) and let Pˆ denote the parity operator such that P...
Consider a one-dimensional real-space wave-function ψ(x) and let Pˆ denote the parity operator such that P ψˆ (x) = ψ(−x). a)Starting from the Rodrigues formula for Hermitian polynomials, Hn(y) = (−1)^n*e^y^2*(d^n/dy^n)e^-y^2 with n ∈ N, show that the eigenfunctions ψn(x) of the one-dimensional harmonic oscillator, with mass m and frequency ω, are also eigenfunctions of the parity operator. What are the eigenvalues? b)Define the operator Π = exp [  iπ (( 1 /2α) *pˆ 2 + α xˆ 2/ (h/2π)^2-1/2)] ,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT