Question

Let f : A → B, and let S, T ⊆ A. Suppose also that f...

Let f : A → B, and let S, T ⊆ A. Suppose also that f is one-to-one. Prove that f(S ∩ T) = f(S) ∩ f(T).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider Theorem 3.25: Theorem 3.25. Let f : A → B, let S, T ⊆ A,...
Consider Theorem 3.25: Theorem 3.25. Let f : A → B, let S, T ⊆ A, and let V , W ⊆ B. 1. f(S ∪T) = f(S)∪f(T) 2. f(S ∩T) ⊆ f(S)∩f(T) 3. f-1(V ∪W) = f-1(V )∪f−1(W) 4. f-1(V ∩W) = f-1(V )∩f−1(W) (a) Prove statement (2). (b) Give an explicit example where the two sides are not equal. (c) Prove that if f is one-to-one then the two sides must be equal.
PROVE USING IVT. Suppose f is a differentiable function on [s,t] and suppose f'(s) > 0...
PROVE USING IVT. Suppose f is a differentiable function on [s,t] and suppose f'(s) > 0 > f'(t). Then there's a point p in (s,t) where f'(p)=0.
Let a < b, a, b, ∈ R, and let f : [a, b] → R...
Let a < b, a, b, ∈ R, and let f : [a, b] → R be continuous such that f is twice differentiable on (a, b), meaning f is differentiable on (a, b), and f' is also differentiable on (a, b). Suppose further that there exists c ∈ (a, b) such that f(a) > f(c) and f(c) < f(b). prove that there exists x ∈ (a, b) such that f'(x)=0. then prove there exists z ∈ (a, b) such...
Let A, B, C be sets and let f : A → B and g :...
Let A, B, C be sets and let f : A → B and g : f (A) → C be one-to-one functions. Prove that their composition g ◦ f , defined by g ◦ f (x) = g(f (x)), is also one-to-one.
(2) Let f : A → A be a bijection. Suppose ∅ ⊂ S ⊆ A...
(2) Let f : A → A be a bijection. Suppose ∅ ⊂ S ⊆ A and f : S → S is also a bijection. Show that f is bijection f : (A − S) → (A − S).
Let f : A → B, g : B → C be such that g ◦...
Let f : A → B, g : B → C be such that g ◦ f is one-to-one (1 : 1). (a) Prove that f must also be one-to-one (1 : 1). (b) Consider the statement ‘g must also be one-to-one’. If it is true, prove it. If it is not, give a counter example.
Let S = {a,b,c,d,e,f,g} and let T = {1,2,3,4,5,6,7,8}. a.  How many different functions are there from...
Let S = {a,b,c,d,e,f,g} and let T = {1,2,3,4,5,6,7,8}. a.  How many different functions are there from S to T? b. How many different one-to-one functions are there from S to T? c. How many different one-to-one functions are there from T to S? d. How many different onto functions are there from T to S?
Let F be a field and let a(x), b(x) be polynomials in F[x]. Let S be...
Let F be a field and let a(x), b(x) be polynomials in F[x]. Let S be the set of all linear combinations of a(x) and b(x). Let d(x) be the monic polynomial of smallest degree in S. Prove that d(x) divides a(x).
Let X be a topological space. Let S and T be topologies on X, where S...
Let X be a topological space. Let S and T be topologies on X, where S and T are not equal topologies. Suppose (X,S) is compact and (X,T) is Hausdorff. Prove that T is not contained in S.
Let X be a topological space. Let S and T be topologies on X, where S...
Let X be a topological space. Let S and T be topologies on X, where S and T are distinct topologies. Suppose (X,S) is compact and (X,T) is Hausdorff. Prove that T is not contained in S. how to solve?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT