Question

(a) If a and b are positive integers, then show that gcd(a, b) ≤ a and...

(a) If a and b are positive integers, then show that gcd(a, b) ≤ a and gcd(a, b) ≤ b.

(b) If a and b are positive integers, then show that a and b are multiples of gcd(a, b).

Homework Answers

Answer #1

id you have any doubt please comment

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) If a and b are positive integers, then show that lcm(a, b) ≤ ab. (b)...
(a) If a and b are positive integers, then show that lcm(a, b) ≤ ab. (b) If a and b are positive integers, then show that lcm(a, b) is a multiple of gcd(a, b).
Show that if a and b are positive integers where a is even and b is...
Show that if a and b are positive integers where a is even and b is odd, then gcd(a, b) = gcd(a/2, b).
Prove that for positive integers a and b, gcd(a,b)lcm(a,b) = ab. There are nice proofs that...
Prove that for positive integers a and b, gcd(a,b)lcm(a,b) = ab. There are nice proofs that do not use the prime factorizations of a and b.
Show that there are infinitely many pairs integers a and b with gcd(a, b) = 5...
Show that there are infinitely many pairs integers a and b with gcd(a, b) = 5 and a + b = 65
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c...
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c x gcd(a, b). (Note that c gcd(a, b) means c times the greatest common division of a and b) (b) What is the greatest common divisor of a − 1 and a + 1? (There are two different cases you need to consider.)
Write a program called gcd that accepts two positive integers in the range of [32,256] as...
Write a program called gcd that accepts two positive integers in the range of [32,256] as parameters and prints the greatest common divisor (GCD) of the two numbers. The GCD of two integers a and b is the largest integer that is a factor of both a and b. One efficient way to compute the GCD of two numbers is to use Euclid’s algorithm, which states the following: GCD (a, b) _ GCD (b, a % b) GCD (a, 0)...
9. Let a, b, q be positive integers, and r be an integer with 0 ≤...
9. Let a, b, q be positive integers, and r be an integer with 0 ≤ r < b. (a) Explain why gcd(a, b) = gcd(b, a). (b) Prove that gcd(a, 0) = a. (c) Prove that if a = bq + r, then gcd(a, b) = gcd(b, r).
Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only...
Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only if gcd(a, b^2 ) = 1
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
Show that gcd(a + b, lcm(a, b)) = gcd(a, b) for all a, b ∈ Z.
Show that gcd(a + b, lcm(a, b)) = gcd(a, b) for all a, b ∈ Z.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT