Question

For subsets X, Y ⊆ R, we define the distance from X to Y as the...

For subsets X, Y ⊆ R, we define the distance from X to Y as the infimum d(X, Y ) := inf D(X, Y ), where

D(X, Y ) := ?{ |x − y| : x ∈ X, y ∈ Y ?}.

Suppose X and Y are sequentially compact.

Prove there exist x ∈ X and y ∈ Y such that |x−y| = d(X,Y).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A. Let p and r be real numbers, with p < r. Using the axioms of...
A. Let p and r be real numbers, with p < r. Using the axioms of the real number system, prove there exists a real number q so that p < q < r. B. Let f: R→R be a polynomial function of even degree and let A={f(x)|x ∈R} be the range of f. Define f such that it has at least two terms. 1. Using the properties and definitions of the real number system, and in particular the definition...
Prove that the Gromov-Hausdorff distance between subsets X and Y of some metric space Z is...
Prove that the Gromov-Hausdorff distance between subsets X and Y of some metric space Z is 0 if and only if X = Y question related to Topological data analysis 2
Let S and T be nonempty subsets of R with the following property: s ≤ t...
Let S and T be nonempty subsets of R with the following property: s ≤ t for all s ∈ S and t ∈ T. (a) Show that S is bounded above and T is bounded below. (b) Prove supS ≤ inf T . (c) Given an example of such sets S and T where S ∩ T is nonempty. (d) Give an example of sets S and T where supS = infT and S ∩T is the empty set....
10. Prove if X and Y are nonempty closed subsets of [a,b]⊂ ℝ such that X∪Y=[a,b],...
10. Prove if X and Y are nonempty closed subsets of [a,b]⊂ ℝ such that X∪Y=[a,b], then X∩Y≠ ∅.
(b) Define f : R → R by f(x) := x 2 sin 1 x for...
(b) Define f : R → R by f(x) := x 2 sin 1 x for x 6= 0, and f(x) = 0 for x = 0. Does f 0 (0) exist? Prove your claim.
Please answer Problems 1 and 2 thoroughly. Problem 1: Let X be a set. Define a...
Please answer Problems 1 and 2 thoroughly. Problem 1: Let X be a set. Define a partial ordering ≤ on P(X) by A ≤ B if and only if A ⊆ B. We stated the following two facts in class. In this exercise you are asked to give a formal proof of each: (a) (1 point) If A, B ∈ P(X), then sup{A, B} exists, and sup{A, B} = A ∪ B. (b) (1 point) If A, B ∈ P(X),...
Let X = [0, 1) and Y = (0, 2). a. Define a 1-1 function from...
Let X = [0, 1) and Y = (0, 2). a. Define a 1-1 function from X to Y that is NOT onto Y . Prove that it is not onto Y . b. Define a 1-1 function from Y to X that is NOT onto X. Prove that it is not onto X. c. How can we use this to prove that [0, 1) ∼ (0, 2)?
For a given set X, consider the family F of its subsets Y such that at...
For a given set X, consider the family F of its subsets Y such that at least one of Y or X\Y is finite. Prove that F is a set algebra. When is F a sigma-algebra? Prove it.
(6) If A ⊂ R define x+A = {x+a : a ∈ A}. Show that (x+A)∩(x+B)...
(6) If A ⊂ R define x+A = {x+a : a ∈ A}. Show that (x+A)∩(x+B) = x+ (A∩B) and (x + A) ∪ (x + B) = x + (A ∪ B) when A, B ⊂ R. Moreover, prove that (x + A) c = x + Ac and x + (y + A) = (x + y) + A
Let E and F be two disjoint closed subsets in metric space (X,d). Prove that there...
Let E and F be two disjoint closed subsets in metric space (X,d). Prove that there exist two disjoint open subsets U and V in (X,d) such that U⊃E and V⊃F
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT