Question

Determine the altitude of a satellite with a periodicity of P=2 hours. a. 1686 km b....

Determine the altitude of a satellite with a periodicity of P=2 hours.

a. 1686 km

b. 8057 km

c. 1690E3 km

d. 35,870 km

Homework Answers

Answer #1

Ans is 1686km if period is 1.99999 & 1688 if period is 2.00002 so I prefer second one with high accuracy

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An Earth satellite has a semi-latus rectum (p) altitude of 7400 km. When the satellite is...
An Earth satellite has a semi-latus rectum (p) altitude of 7400 km. When the satellite is at its semi-latus rectum, it has a velocity of 6.5 km/s. Find the orbit's semi major axis.
A satellite is in circular orbit at an altitude of 1500 km above the surface of...
A satellite is in circular orbit at an altitude of 1500 km above the surface of a nonrotating planet with an orbital speed of 3.4 km/s. The minimum speed needed to escape from the surface of the planet is 8 km/s, and G = 6.67 × 10-11 N · m2/kg2. The orbital period of the satellite is closest to A)59 min. B)45 min. C)72 min. D)65 min. E)52 min.
A satellite is set to orbit at an altitude of 20200 km above the Earth's surface....
A satellite is set to orbit at an altitude of 20200 km above the Earth's surface. What is the period of the satellite in hours? (Earth radius 6.378×1066.378×106 m, Earth mass 5.97×10245.97×1024 kg, Universal Gravitational constant G=6.67×10−11m3kg−1s−2G=6.67×10−11m3kg−1s−2 ).
A 969-kg satellite orbits the Earth at a constant altitude of 103-km. (a) How much energy...
A 969-kg satellite orbits the Earth at a constant altitude of 103-km. (a) How much energy must be added to the system to move the satellite into a circular orbit with altitude 208 km? (b) What is the change in the system's kinetic energy? (c) What is the change in the system's potential energy?
A 984-kg satellite orbits the Earth at a constant altitude of 110-km. (a) How much energy...
A 984-kg satellite orbits the Earth at a constant altitude of 110-km. (a) How much energy must be added to the system to move the satellite into a circular orbit with altitude 198 km? MJ (b) What is the change in the system's kinetic energy? MJ (c) What is the change in the system's potential energy? MJ
A 972-kg satellite orbits the Earth at a constant altitude of 99-km. (a) How much energy...
A 972-kg satellite orbits the Earth at a constant altitude of 99-km. (a) How much energy must be added to the system to move the satellite into a circular orbit with altitude 201 km? ____ MJ (b) What is the change in the system's kinetic energy? ____MJ (c) What is the change in the system's potential energy? ____ MJ The answer is not 974.5 mi. Its marked wrong
An Earth satellite is in a circular orbit at an altitude of 500 km. Explain why...
An Earth satellite is in a circular orbit at an altitude of 500 km. Explain why the work done by the gravitational force acting on the satellite is zero. Using the work-energy theorem, what can you say about the speed of the satellite?
A satellite is in circular orbit at an altitude of 1800 km above the surface of...
A satellite is in circular orbit at an altitude of 1800 km above the surface of a nonrotating planet with an orbital speed of 3.7 km/s. The minimum speed needed to escape from the surface of the planet is 8.4 km/s, and G = 6.67 × 10-11 N · m2/kg2. The orbital period of the satellite is closest to 59 min. 83 min. 75 min. 67 min. 51 min.
A 400 kg satellite is in a circular orbit at an altitude of 550 km above...
A 400 kg satellite is in a circular orbit at an altitude of 550 km above the Earth's surface. Because of air friction, the satellite eventually falls to the Earth's surface, where it hits the ground with a speed of 1.90 km/s. How much energy was transformed into internal energy by means of air friction? J
Consider a satellite at an altitude of 700 km above Earth, with its velocity perpendicular to...
Consider a satellite at an altitude of 700 km above Earth, with its velocity perpendicular to the direction to Earth. If the satellite would have a velocity that is 0.2 km/s larger than the local escape velocity, what would the excess velocity V∞ be? The answer was 2.07 km/s. I would like to know the detailed steps to reach that answer
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT