Question

Consider the unit circe C (the circle with center the origin in the plane and radius...

Consider the unit circe C (the circle with center the origin in the plane and radius 1). Let S = {α : 2α < (the circumference of C)} . Show that S is bounded above. Let p be the least upper bound of S. Say explicitly what the number p is. This exercise works in the real number system, but not in the rational number system. Why?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A circle has radius 2 and center (0, 0). A point P begins at (2, 0)...
A circle has radius 2 and center (0, 0). A point P begins at (2, 0) and moves along the circumference of this circle in the counterclockwise direction. It moves with constant angilar velocity 2.7 radians per second. Let s be the arc in standard position whose terminal point is P. What is s in terms of t, the number of seconds since P began moving? What are the coordinates of P in terms of s? What are the coordinates...
Let C be the circle with radius 1 and with center (−2,1), and let f(x,y) be...
Let C be the circle with radius 1 and with center (−2,1), and let f(x,y) be the square of the distance from the point (x,y) to the origin. Evaluate the integral ∫f(x,y)ds
Find a path that traces the circle in the plane y=5 with radius r=5 and center...
Find a path that traces the circle in the plane y=5 with radius r=5 and center (2,5,0) with constant speed 25. r1(s)
A particle of mass m moves about a circle of radius R from the origin center,...
A particle of mass m moves about a circle of radius R from the origin center, under the action of an attractive force from the coordinate point P (–R, 0) and inversely proportional to the square of the distance. Determine the work carried out by said force when the point is transferred from A (R, 0) to B (0, R).
Problem 2. Let C be the circle of radius 100, centered at the origin and positively...
Problem 2. Let C be the circle of radius 100, centered at the origin and positively oriented. The goal of this problem is to compute Z C 1 z 2 − 3z + 2 dz. (i) Decompose 1 z 2−3z+2 into its partial fractions. (ii) Compute R C1 1 z−1 dz and R C2 1 z−2 dz, where C1 is the circle of radius 1/4, centered at 1 and positively oriented, and C2 is the circle of radius 1/4, centered...
Given: Q = 4πε0 C at the origin and on the z = 0 plane: at...
Given: Q = 4πε0 C at the origin and on the z = 0 plane: at x = -2 m. line, ρL1 = -2πε0 C/m; at x = -1 m.line, ρL2 = -πε0 C/m; at x = 1 m.line, ρL3 = πε0 C/m; and at x = 2 m.line, ρL4 = 2πε0 C/m. (i) Find the total flux crossing the surfaces of the box whose center is at the origin and with 0 <= |x|, |y|, |z| <= 3. (ii)...
. Let C be the curve x2+y2=1 lying in the plane z = 1. Let ?=(?−?)?̂+??...
. Let C be the curve x2+y2=1 lying in the plane z = 1. Let ?=(?−?)?̂+?? = (a) Calculate ∇×? (b) Calculate ∫?∙?? F · ds using a parametrization of C and a chosen orientation for C. (c) Write C = ∂S for a suitably chosen surface S and, applying Stokes’ theorem, verify your answer in (b) (d) Consider the sphere with radius √22 and center the origin. Let S’ be the part of the sphere that is above the...
Consider the Circle cycle during which a system undergoes a clockwise circular cycle in the T-S...
Consider the Circle cycle during which a system undergoes a clockwise circular cycle in the T-S plane. The Circle cycle has its center at temperature Tc and has a radius of R, where |R| < |Tc|. (a) Determine the thermal efficiency, ηth, for the Circle cycle. Simplify your result as far as possible. (b) If R is fixed and Tc increases, does ηth increase, stay the same, or decrease? (c) If Tc is fixed and R increases, does ηth increase,...
IN C++ - most of this is done it's just missing the bolded part... Write a...
IN C++ - most of this is done it's just missing the bolded part... Write a program that creates a class hierarchy for simple geometry. Start with a Point class to hold x and y values of a point. Overload the << operator to print point values, and the + and – operators to add and subtract point coordinates (Hint: keep x and y separate in the calculation). Create a pure abstract base class Shape, which will form the basis...
Please answer the following Case analysis questions 1-How is New Balance performing compared to its primary...
Please answer the following Case analysis questions 1-How is New Balance performing compared to its primary rivals? How will the acquisition of Reebok by Adidas impact the structure of the athletic shoe industry? Is this likely to be favorable or unfavorable for New Balance? 2- What issues does New Balance management need to address? 3-What recommendations would you make to New Balance Management? What does New Balance need to do to continue to be successful? Should management continue to invest...