Question

sketch a bifurcation diagram for: dy/dt = y(y^2+ α) where α is a parameter

sketch a bifurcation diagram for:
dy/dt = y(y^2+ α)
where α is a parameter

Homework Answers

Answer #1

Sketch a bifurcation diagram for:

dy/dt = y(y^2 + alpha)

Where 'alpha' is a parameter.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the autonomous differential equation dy/dt=1-y^2, sketch a graph of f(y) versus y, identify the equilibrium...
For the autonomous differential equation dy/dt=1-y^2, sketch a graph of f(y) versus y, identify the equilibrium solutions identify them as stable, semistable or unstable, draw the phase line and sketch several graphs of solutions in the ty-plane.
the following EDO: dx/dt= x4 −µx2 where µ is a parameter in R. (i) Identify the...
the following EDO: dx/dt= x4 −µx2 where µ is a parameter in R. (i) Identify the critical value fµC or which a bifurcation occurs. Give the equilibrium points for µ <µC and µ> µC, say if each of these is stable or unstable, and plot the phase lines for these two cases. (ii) Draw the bifurcation diagram indicating in dotted line the unstable equilibrium points and in solid line the stable equilibrium points.
dx/dt - 3(dy/dt) = -x+2 dx/dt + dy/dt = y+t Solve the system by obtaining a...
dx/dt - 3(dy/dt) = -x+2 dx/dt + dy/dt = y+t Solve the system by obtaining a high order linear differential equation for the unknown function of x (t).
dx/dt=y, dy/dt=2x-2y
dx/dt=y, dy/dt=2x-2y
Considering the differential equation dx/dt = y − x^2 , dy/dt = y − x What...
Considering the differential equation dx/dt = y − x^2 , dy/dt = y − x What would be the Jacobian matrix J(x,y), as well as the eigenvalues/types at each equilibrium.
Let w(x,y,z) = x^2+y^2+z^2 where x=sin(8t), y=cos(8t) , z= e^t Calculate dw/dt by first finding dx/dt,...
Let w(x,y,z) = x^2+y^2+z^2 where x=sin(8t), y=cos(8t) , z= e^t Calculate dw/dt by first finding dx/dt, dy/dt, and dz/dt and using the chain rule dx/dt = dy/dt= dz/dt= now using the chain rule calculate dw/dt 0=
dx/dt = 1 - (b+1) x + a x^2 y dy/dt = bx - a x^2...
dx/dt = 1 - (b+1) x + a x^2 y dy/dt = bx - a x^2 y find all the fixed point and classify them with Jacobian.
dy/dt = x- (1/2)y dy/dt =2x +3y a)matrix form b)find eigenvalues/eigenvectors c)genreal solution
dy/dt = x- (1/2)y dy/dt =2x +3y a)matrix form b)find eigenvalues/eigenvectors c)genreal solution
(dx/dt) = x+4z (dy/dt) = 2y (dz/dt) = 3x+y-3z
(dx/dt) = x+4z (dy/dt) = 2y (dz/dt) = 3x+y-3z
Are both of the following IVPs guaranteed a unique solution? Explain. (a) dy/dt =y^ 1/3sin(t), y(π/2)=0....
Are both of the following IVPs guaranteed a unique solution? Explain. (a) dy/dt =y^ 1/3sin(t), y(π/2)=0. (b) dy/dt =y^1/3 sin(t), y(π/2)=4.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT